การวิเคราะห์ข้อมลการจราจรโดยวิธีการทางรปภาพ ANALYSIS OF TRAFFIC DATA USING THE IMAGE PROCESSING APPROACH

วิโรจน่ ศธีสุอภานนท่
$01015 e^{\prime}$
สถาบันแทคโนโลยี้พระจอมแกล้ารมบุรี
กรุงแทพฯ
VIROAT SRISURAPANON
Lecturer
King Mongkut's Institute
of Technology Thonburi, Bangkok

ธิโงขิ โมริ

รองคาสดราจารย์ สกาบันแทกโมโลยี่แห่งเงชชีย

กรุงททพฯ
HIROSHI MORI
Associate Professor
Asian Institute of Technology,
Bangkok

บตลัดม่อ
การวิจัะนี้เพื่อศึกษาการเก็บรวบรวมข้อมูลทางด้านการจราจร ได้แก่ ระยะระหว่างคัน (headway) ความเร็วรถ (vehicle speed), การเปลี่ยนเ่องจราจร (lane changing) และ การจำแนกประเภท รถ (vehicle classification) จากวีดีโอ โดยวิธีอัดโนม่ต มบวนภารนี้ใช้ส้าหวับสภาพการจราวรที่มี การเคลื่อนตัวอยู่ตลอดเวลา ทั้นตอนหลักอาจแบ่งได้เป็น 2 ส่วน ใหฆ่ ๆ คือ การแยกรูปภาน (Image Extraction) และการวิเคราะห์ซ้อมูลการจราจร (Analysis for Traffic Stream) ส่วนแร เป็มบวนการทางรูนกาพ ช่งดัดแปลงมาจากวิธีการของ Vieren (1991) เพื่อี่จะได้ฐูปขาวคำ (binary image) ส่วนหลังเ โ็นการหาลักษแะบองจราจร โดะใษ้โปรแกรมภาษาเบสิก ชิ่งเป็นพั้นตอนต่อจากส่วนแรก หลักการทั่วไมมีอมู่ว่า กำหนดเสืนตรวจจับ (detection line) พั้นมา 2 เส้น घวางช่องจราจรที่ตัองการ หาบ้อมุลทางจราจร โดยกราบระระห่างระหว่างเส̆นทั้งสอง ความเท้มฉองแสงตามแนวเส้นตราจจับจะเโ็น ตัวบอกว่ามีรถผ่านหรือไม่ มณะที่รถผ่านเสีนตรวจจันต่ละเสี้น เวลาที่มากัง (arrival time) จะถูกนัน กิก และจับคู่กันโดะใช้เทศนิคการจัดกลุ่มและเทคนิลการจับคุ่ ผลการวิังยับสภาพจราจรบนทางด่วนเฉลิม มหานคร พบว่าเหมาะสำหรับารหาคว่ามเร็วรก ค่าคว่ามดลาดเคลื่อนทองความเร็วเฉลี่ยของรถ ± 3 เปอร์งร็นต์ เมื่อเทีะบกับวิธีกาวหาโดยการนันทักเวลาบนจอโทรกัศน์ (Manual Extraction)

SUURARY

This research concentrates on traffic data collection, headway, vehicle speed, lane changing and vehicle classification by video recording using image processing to extract these data automatically. This developed algorithm is applicable to moving vehicles. The overall procedure is separated into two major parts: image extraction and analysis for traffic stream. The former employed the interframe technique modified from Vieren's method (1991) to obtain a binary image. The latter part is developed to extract traffic data from the former procedure. Two detection lines are set across a lane to detect brightness along the lines and data from these two lines were matched by the developed algorithm. Thanks to grouping and group matching techniques in this part, they can reduce many errors before finding the vehicle speed. The result is good for speed study on expressway in Bangkok, the error of average speed about $\pm 3 x$ while comparing with manual extraction.

This algorithm was implemented as nonreal time. Time required by a personal computer to process a sequence of images was 25 times slower than real time. The detction rate is 5 frames per second by this machine, which can cause misdetecting. However, a grouping technique and a matching technique are proposed to reduce the error satisfactorily.

มบวนการทางงูเภาพ ดังรูบที่ 1 สัญฏณแาพ $I(x, y)$ จากเครื่องอัดวีดีโอ จะถูกส่งผ่าห
 analog to digital (A/D) converter เป็นตัวเลือกสัญูาa (sampling)

 - ถัง 255 ถิ่งมี้ที้งนมด 512×512 วุด (pixels)

ตัวจัดษนวนกาวภาพ (Image' Processes)

 ความจำกาวร 108 megabyte และหท่วมความจำสิ่วคราว (RMM disk) 5 megabyte ิ่งมีความเริว

ตัวแสดงผล (Display device)

กาวuธñabtu (Image Extraction)

 เมื่อтาตัแรกวิ่งห่านเส้น

$$
\begin{equation*}
|c-p|=(c-p) \text { OR }(p-c) \tag{1}
\end{equation*}
$$

ษั้นดอนนี้เพื่อเนันเอาเฉพาะทอบของรูปรถจากกั้นตอนที่นล้ว (difference image) และรู่ไนกาพปปจุ in (current image) โดยใชั simple marks, wx และ Wy [2] ดังรูนี่ 3 แmนในสนการที่ 2

$$
\begin{equation*}
|\nabla f(x, y)| \rightarrow \sqrt{\left(\left(f_{x}\left(n_{1}, n_{2}\right)\right)^{2}+\left(f_{y}\left(n_{1}, n_{2}\right)\right)^{2}\right)} \tag{2}
\end{equation*}
$$

ใดย $|\nabla f(x, y)|$ หมายกิง ค่าความเ ข้มแสง ณ วุด (x, y) หลังจากผ่านทั้นตอนการเนันมอบกาพ (a discrete approximation of nondirectional edge detector)

$$
\begin{aligned}
& f_{x}\left(n_{1}, n_{2}\right)=f\left(n_{1}, n_{2}\right) * W x \\
& f_{i}\left(n_{1}, n_{2}\right)=f\left(n_{1}, n_{2}\right) * W y
\end{aligned}
$$

聯細นการคณ (Multiplication; M(c))
จุดประสงค์ของซั้นตอนนี้ เพื่อให้ได้เฉพาะทอบรูปรถเฉพาะในภาพiไจจุบัน (current image) เท่านั้น การคูณกันของรูปกาพจะมีผลเท้ากับ การดำเนินกาวศัวย AND ในทางตรรกศาสตร์ ดังสมการที่ 3

$$
\begin{equation*}
M(C) \rightarrow G[D(P, C)] * G(C) \tag{3}
\end{equation*}
$$

แันตอนการกรอง (Filter)
ธั้นตถนนี้เพื่อลดตัวแปลกปลอม (random noise) ให้น้อยลงโดยใช้ mask Wo [3] ดังรูเที่ 4 (ั้ นคอนดัดเงท (Thresholding)

ษั้นอนนี้เพื่อลบเงาทองรถ (shadows) และสิ่งแปลกแนลอมที่เกิดทั้น (artifacts) ออกจากภาพ โดยการกำหนดค่าษั้นค่าหนั่ง (threshold value) ดังตัวอย่างในสมการที่ 4

$$
f^{\prime}(x, y)=\begin{array}{ll}
255 & \text {;if } f(x, y) \geq 40 \tag{4}\\
0 & \text {;if } f(x, y)<40
\end{array}
$$

เมื่อ Threshold value $=40$

ผลลัพธ์จะปรากญเป็นกาพษาวคำ โดะขอบของรกจะเป็นสีษาวที่เหลือจะเป็นสีดำ
ั้ำอนแรเงา (Binary Operator)
ชั้นตอนนี้เพื่อเติมสีทาวภาะในขอบรถให้เต็ม เมื่อเริ่มการทำงานโดยอัตโนมัต ความเช้มแสงตามแนว เนื้นตรวจจับ (detection line) จะถูกเก็บไว้ในหน่วยความจำเพื่อนำไม่านษบวนการในฟั้นตอนม่อไป การวิเคราะห์ไีมุมฉารจราจร (Analysis for Traffic Stream)

ไ้อมูลการจราจรที่ว่เคราะห์ มีด้วยกัน 4 ประเภท ดังนี้
(ก) ระยะระหว่างคัน (headway)
(y) ความเร็วรถ (vehicle speed)
(ค) จำนวนรถเปลี่ยนช่องจราจร (lane changing) และ
(ง) การจำนนกประเภกรก (vehicle classification)

ผลรวมทองความเ ทัมแสงตามแนวของเสืนตรวจจับ ใชี่เป็นเกณต์ในการตัดสินว่ามีรถผ่านเส้นตรวจจับหรือ
 (arrival time) घองรถムด่ละคัน นล้วทำการคำนวณหาระยะระหว่างคัน ดังรูปที่ 5 แสดงการตรวจจัน ระยะระหว่างคันโดยวิธีอัคโนมิต

โดะปกติกลุ่มรถกี่มีระยะระหว่างคันสั้น (short headway) จะมีความเร็วซองรถทีมีค่าใกล้เคียงกัน
 (grouping) รถที่มีระยะระหว่างคันที่ต่อเนื่องกัน นัอยกว่าเกณฑ์ จะถุกวัดไว้ในกลุ่มเดียวกัน

หลังจากรัดกลุ่มรกที่ผ่านเส้นดรวจจับทั้งสองแล้ว จะทำการจับค่กลุ่มรถ (group matching) ระหว่าง เสันตรวจจับตั้งสอง ถ้าหากจำนวนาา (frames) อยู่ในช่วงที่ยอม่ให้ กลุ่นรถทั้งสองจะถูกับคู่กัน เพื่อ นำไมคำนวถมาระฮะเวลา (travel time) ที่รถแต่ละคันในแต่ละกลุมผ่านระหว่างเสันตรวจจับทั้งสองเส̆น และนำไปหารระยะทางระหว่างเส็นทั้งสอง (fixed distance) จะสามารณหาความเรววรณมต่ละดันได้ดัง ทั้นมตนในรุที่ 6

การเปลี่ยนป่องจราจร (lane changing) แบ่งเป็น 2 ประเภm คือ การแทรก (immerging) และ กาวนยก (diverging) จำนวนรถที่เเลื่ยนช่องจราจรสามารถคำนวแได้จาก วจำนวนรถทั้งนมดที่ผ่านเส้น ตรวจจันต่ละเส้น ลบค้วะจำนวนรกทั้งหมดที่ถูกจับคู่กัน
 ประเภตรถจะแยกต่างหากจากโปรนกรมที่ใช้หาความเร็วของรก

(ก) การแรเงา (shading)
ในธั้นดอนการแสกรูปภาพ ผลที่ได้สะเป็นรูปขาวดำ ส่วนตัวรถจะเป็นผิจาว รถคันหนึ่ง จะประ กอบด้วยรดฐาวเล็กต่อเนื่องกันเ ป็นกล่ม ถ้าหากจุดษาวไม่ต่อเนื่องกันเป็นกลุ่มเคียวการวิเคราะห์ ษ้อมูลในธั้นตอนหลังจะถือว่าเป็นรถนากกว่าหนึ่งคัน สิ่งปัญหานี้มักจะพบกับรถกมีสี่า
(v) รถที่ต่อเนื่องกัน (continuous vehicles)

กรณีที่มุมมองของกล้องเอียงและรถที่ตามมาอยู์ในระยะที่ใดล้กันมาก จะมองเห็นรถคันหน้าบังรถคัน หลัง ไั้นตอนการแยกรูปภาพจะไม่สามารณยยกได้ว่าเป็นรถคนละคัน เนื่องจาก กลุ่มษองจุดขาว บองรถแต่ละคันต่อเนื่องกันเ ป็นกลุ่มเดียว .
(ค) ระยะระหว่างคันสี้น (short headway)
สำหรับการวิจัะนี้ได้กำหนดการตรวจจับที 76 ภาพ ถ้าหากระฐะระหว่างผันน้อย่กว่า 6 ภาพ รถคันที่อยู่หลังอาจจะไม่ถูกตรวจจับ ชิ่งถื่อเ ป็นข้อผิดพลาดอันหนึ่ง
(ง) ความสูงทองรก (vehicle height) เม่อมุมกล้องเ อียงจะมองเห็นรถปราณมนกั้งสองป่องจราจร ชั่งมีผลทำให้เกิตการตรวจจัยก้่าชี้อน
(จ) สภานแวดล้อม (ènvironment)
หลังจากฝนหยุดตก สภาพถนจะค่ละ ๆ แห้ง ส่วนที่รถวิ่งผ่านจะแหังเร็วกว่า จะทำให้เห็นเ ป็น ว่องล้อ ถั้นตอนการแยกรูไม่สามารณแสกได้ออกว่าส่วนไหนเ ป็นรถหรือกนน โปรนกรมที่เจ้งานวิ จัยนี้จึงเหมาะกับสภานแวดล้อมที่แจ่มใส

ต้อจำกัด

เนื่องจากภาพปัจจุบัน (current image) ในมต่ละรอบการทำงานซองโปรนกรม จะเร็นกาพเ่อนหน้า (previous image) ธองรอบการทำงานถัดไป ดังนั้นการตรวจจับรถจะทำได้เฉพาะรถที่กำลังเคลื่อนที่ (moving vehicle) เท่านั้น

ความเร์วของเควื่องเล่นวีดีโอ มีความเร็วต่าสุด 25 วินากี ต่อ 38 ภาพ และเวลาทีเถ้ในการนะกภาพ แต่ละรอบการทำงานประมาณ 5 วินาที ดังงน้้แความถี่มองการตรวจจับ สามารถกำหมดได้สุงสุด ทุ ๆ 6 กาพ ชิ่งมีผลโคยตรงกับความละเอียดแม่นลำในการตรวจจับเวลาที่รกมาถัง (arrival time)
 (Interframe technique) a่่างััตโนมิต มีอัตราการตรวจจับ 5 ภาพต่อวินาที่ จะทำให้ดารตรวจจับ

 แลื่ะแบองรงางร

กัดเสนอแนะ

 technique) นmuวิธีการภาพพ่อเนื่อง (interframe technique)

 เจนกว่า
(ค) การใช้กาพีี (color image) ในการวิเดราะห์แmแารใช้กาพธงรมดคา (monochrome

เลกสาวล้างอิง

1. C. VIEREN, J.-P. DEPARIS, P BONNET AND J.G. POSTAIRE (1991), Dynamic Scene Modeling for Automatic Traffic Data Extraction, Journal of Transportation Engineering, Vol. 117, No. 1, Jan./Feb., pp. 47-56.
2. J.M.S. PREWITT (1970), Object Enhancement and Extraction, in Picture Processing and Psychopictories (B.S. Lipkin and A. Rosenfeld, Eds.), Academic Press, New York, pp. 75-149.
3. J.S. Lim (1990), Two-Dimension Signal and Image Processing, Prentice-Hall International, Inc..
4. V. SRISURAPANON (1992), Analysis of Traffic Data Using the Image Processing Approach, Asian Inst. of Tech., Bangkok.

$I(x, y)$	
$I^{\prime}(x, y)$	$=$ สัญูาณกาพหลังผ่านเบวนการทางรูปกาพ ณ จุด (x, y)
$\mathrm{f}(\mathrm{x}, \mathrm{y})$	$=$ สัญญาญคัวเละกี่แมลงมาจากสัญญูกาพ $I(x, y)$
$g(x, y)$	$=$ สีญญาญตัว เละหลังผ่านบบวนภารทางกาพ
P	$=$ ภาwก่อนหน้า (Previous image)
C	$=$ กาwi้ชุุบัน (Current image)
$D(p, c)$	$=$ ภานแสดงผลลบโดยสมบูรณ์ระหว่างภาพก่อนหน้า และภาพไ้จจุบัน
G(c)	$=$ การเนันซอบรูปของกาพปัจจุััน
M (c)	$=$ ภาพmีเกิตจากกระบวนการตรวกศาสตร์ $G[D(p, c)]$ และ $G(c)$
$\operatorname{HEAD}(\mathrm{K}, \mathrm{L}, \mathrm{M})$	$=$ тะษะระหว่างคัน (headway) घองวก M ตรวจจับโคยเสีนครวจจัน K

$\operatorname{HEAD}(K, L, I, J)=$ тะยะระหว่างคันษองรก J กลุ่น I ตราจจับโดยเสันตรวจจัน K ตามชองเคินรถ L $\operatorname{SPEFD}(L, I, J)=$ ความเร็วรถ J กลุ่ม I ระหว่างเสันตรวจจับทั้งสอง ตามช่องเดินรถ L

-	\bullet	\vec{i}
-	\bullet	\vec{i}
-	\bullet	\vec{i}

\dot{i}	\cdots	\bar{i}
\bullet	\bullet	\bullet
-	\cdots	\rightarrow

u*

