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The unknown time-dependent boundary heat flux of a multidimensional body is determined from temperature 
measurements inside the body or on its boundary. The sequential function specification method with the assumption 
that future-boundary heat flux varies linearly with time is used to solve the inverse problem. The method of discret- 
ization used by the proposed algorithm is the houndary element method. The effectiveness of the algorithm is illustrated 
by solving a sample two-dimensional problem. 0 2001 Published by Elsevier Science Ltd. 

In a linear inverse heat conduction problem (IHCP), 
the unknown boundary heat flux of a solid body, of 
which thermophysical properties are known, is to be 
determined from temperature measurements inside the 
body or on the surface of the body. A number of solu- 
tion techniques have been proposed for the one-dimen- 
sional IHCP [I-51. The multidimensional IHCP, 
however, has received considerably less attention so far 
[6-81 despite the fact that most practical problems can- 
not be approximated as one-dimensional problems. 

Among the methods proposed for multidimensional 
IHCP, the sequential function specification method a p  
pears to have the promise to be able to deal with IHCP 
efficiently. The method was first introduced by Beck 
et al. [I] for dealing with one-dimensional problems. The 
distinct feature of this method is its use of futwe-time 
temperature measurements to stabilize the estimation of 
the current heat flux component. This method requires 
the determination of sensitivity coefficients, defined as 
the temperature response at sensor locations to unit 
applied heat flux at the boundary where the heat flux is 
to be estimated. Later, Osman et al. [q applied this 
method to two-dimensional problems. Whereas the de- 
termination of sensitivity coefficients for the one- 
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dimensional IHCP is relatively easy because the ana- 
lytical solution to the corresponding direct problem is 
known, the determination of sensitivity coefficients for 
the two-dimensional IHCP must be done using a nu- 
merical method. The finite element method is attractive 
for this purpose because of its ability to handle arbitrary 
geometry. Furthermore, the sensitivity coefficients wuld 
be determined using the existing finite-element codes. 

Apart from the finite element method, another nu- 
merical method that is able to handle arbitrary geometry 
is the boundary element method. For problems having 
no source term, the boundary element enjoys an im- 
portant advantage over the finite-element method in that 
no domain mesh generation is required. The houndary 
element method was previously used to solve the steady- 
state IHCP [9,10] and the onedimensional time-de- 
pendent IHCP [Z]. In this paper, multidimensional 
time-dependent IHCP will be considered. The solution 
will be s t a b i i  by the sequential function spdca t i on  
method bith the piecewise linear basis function and the 
assumption of linearly varying boundary beat flux 
components. Recent results by Cbantasiriwan [I11 
showed that this method yielded better estimates of 
boundary condition than the well-known sequential 
function specification method that uses the piecewise 
wnstant basis function and the assumption of wnstant 
houndary heat flux components [I]. However, the 
method previously presented can be applied to only one- 
dimensional problems. The generalization to multidi- 
mensional problems will be shown here. The following 
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Nomenclature 

A M. x M, diagonal matrix 
a coefficient that depcnds on t 

r(Ml + Ml) x M3 matrix 
vector of temperature measurements 
M3 x r(Ml + Ml) matrix 
expected value of random variable y 
interior temperature 
fundamental solution 
known boundary heat flux 
transformation matrix 
dummy indices 
the number of nodes in an element 
the number of sensors on rl 
the number of sensors inside the object 
the number of heat flux wmponents on rl 
which are to be determined 
the number of additional heat flux 
wmponents at comer or edge nodes 
the number of boundary elements 
the number of boundary nodes 
dimension of the problem 
number of time intervals 
number of heat flux wmponents to be 
estimated 
outward pointing unit vector normal 
to boundary 
M, x M, matrix 
MZ x M, matrix 
M. x M3 matrix 
Ml x M3 matrix 
M, x (M. - M3) matrix 
Mz x (M. - M3) matrix 
boundary heat flux into the domain 
future-time parameter 

7 position vector 
T temperature 
t time 
U analytical solution to a heat conduction 

problem 
X (MI + Ml) X M3 matrix 
XI M. x M3 matrix 
xz M2 x M3 matrix 
x position of sensor 
F vector of temperature measurements 
2 vector of unknown heat flux components 
Vb) variance of random variable y 

Greek symbols 
A . . 

daerrrrrmstic bias 
e temperature measurement error 
@ interpolating function 
6 function relating boundary temperature 

to boundary temperature 
r boundary 
rl part of the boundary where heat flux is 

known 
rl part of the boundary where heat flux is 

to bc determined 
2 variance in temperature measurement 
7 time 
@ function relating boundary temperature to 

boundary heat flux 
t position vector 

Subscripts 
i ,  j ,  k, I ,  m boundary element indices, boundary 

node indices, space indices or matrix 
element indices 

Superscripts 
i ,  j ,  k,N time indices 

sections will describe the statement of the problem, the 
discretization of the problem using the boundary el- 
ement method, the proposed sequential function speci- 
fication algorithm, and the results and discussion of the 
application of this algorithm to the sample problem. 
Finally, the conclusion will follow. 

2. Statemeat o f  the problem 

Consider a solid object with part of its boundary TI  
subjected to known heat flux g( i ,  t )  and the remaining 
part of the boundary r2 subjected to unknown heat flux 
Z(?,t). Suppose that the object has constant thermo- 
physical properties, making the problem a linear one. 
Without the loss of generality, we can take the value of 
the thermal diffusivity to be unity and the initial con- 

dition to be homogeneous. The heat conduction process 
can therefore be described by the following equations: 

n*~(?, t )  = g(?, t )  for i on r :  . (3) 

Let temperature sensor be located at 5 ,  and let 
measurements be taken at time ,At. 

T (5 ,  jAt) = $". (4) 

The temperature sensors may be located on the bound- 
ary or inside the objed. If the unknown boundary heat 
flux Z is assumed to be a piecewise h e a r  function of 
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position and time, Eqs. (1)-(4) can be solved for heat L 

flux components at selected boundary nodes. i ~ G )  (7) = x i , k ~ O ' )  Qk(?), 
k=l 

3. Formulation of the boundary element method 

In this section, the formulation of the boundary el- 
ement'method for subsequent application to the IHCP 
will be derived. The boundary element formulation for a 
time-dependent linear heat conduction problem is given 
by [I21 

where q is heat flux, a is coefficient that depends on t ,  
and the fundamental solution G  is 

and m is 2 for two-dimensional problem or 3 for three- 
dimensional problem. Divide the boundary r into Me 
boundary elements and time t into N equal time inter- 
vals. Eq. (5) becomes 

where k is local node index, and L is the number of 
nodes in an element. Each element is assumed to contain 
the equal number of local nodes. Substituting Eqs. 
(8)-(11) into Eq. (7) yields 

+ (N - j + I)) R f G  dz] a(?) di} ( i . k ~ u ) )  

If Eq. (12) is evaluated at a point lk on the boundary 
N jA t  or inside the object, the resulting equation after the as- 

- $ Ji  [g J,-~)~'  ( 7 ,  r d ( -  ; sembly process can be written as 

1 
N M" 

NAt-z)dr d7, (7) akT,(N) x x 4(zk, 6,  (N - j)~t)<')  
j=l i=l 

where the front subscript denotes element index. Next let 
us approximate iq and (T by piecewise linear functions in 
time: 

iqu'(7) - iqO'-l) 7) (z - NAt) 
At ( I 
+ q ( ) ( N  - j + 1 - q 1 ( 7 ) ( ~  - j )  (8) 

where superscript denotes time index. Now approximate 
,qV) and i ~ u )  over element i, making use of interpolating 
function Qk, as follows: 

where the back subscript denotes global node index, M,, 
is the number of boundary nodes, and M, is the 
number of additional heat flux components at corner 
o_r edge nodes. Note that coefficient ak becomes unity if 
tk is inside the object. For two-dimensional problems, 
each corner node can have two heat flux components; 
therefore, M, is equal to the number of corners. For 
three-dimensional problems, each edge node can have 
two heat flux components, and each corner node can 
have three heat flux components. Function 4, denoting 
function that relates boundary temperature to bound- 
ary temperature, and function $, denoting function 
that relates boundary temperature to boundary heat 
flux, are obtained from the evaluation of integrals 
shown in Eq. (12). The evaluation of time integrals can 



3826 S. Chantasiriwan I International Journal of Heat and Mass Transfer 44 (2001) 3823-3832 

be done exactly, whereas the evaluation of boundary N N [jW - R)] = C pp- j )  [ f ~ )  - y f ) ]  + C ~ f f - i l t ~ ) .  
integrals should be performed using the Gaussian 

j= 1 j= l quadrature. 
Suppose that there are a total of MI + M2 sensors, (20) 

with M, sensors on the boundary and ~2 sensors inside Applying the time-stepping procedure to Eqs. (19) and 
the object. In addition, suppose that there are Mn nodes (20) gives us the following relations between the 
on the boundary, M3 of which are locations of dcnown boundary and interior temperatures and the unknown 
heat flux components to be determined. Eq. (13) is now boundary heat flux: 
written for Mn boundary node points and M2 interior 

k sensor locations, yielding Mn + M I  equations, which ?(,) - ?:) ,)= xx,+k)i(k), 
may be expressed as the two following matrix equa- j= 1 
tions: 

where A is the Mn x Mn diagonal matrix of coefficients a; 
?G) is the vector of boundary temperatures at time jAt; 
7 G )  is the vector of temperature measurements at inte- 
rior sensor locations at time jAt; 8) is the vector of 
unknown heat flux components at time jAt; g'u) is the 
vector of known boundary heat flux components at time 
jb t ;  Mn x Mn matrix P,(N-') and M2 x Mn matrix P, (N-~)  
are related to $; and Mn x M3 matrix ~ y - j ) ,  M2 x M3 
matrix Rff-j), Mn x (Mn - M 3 )  matrix sIN-j), and 
M2 x (Mn - M3) matrix siN-j) are related to $. 

Let T f )  and S f )  be, respectively, the boundary and 
interior temperature responses at time jAt, which are the 
solution to the direct heat conduction problem described 

a by Eqs. (1)-(3) and an additional boundary condition 

z f ~ ( v ' ,  t )  = 0 for v' on r2. (16) 

??) and TJN) can then be written as 

If g' is known as a function of time, and fr) can be 
determined by a time-stepping procedure. Subtracting 
Eq. (17) from Eq. (14) and Eq. (18) from Eq. (15) results 
in 

where x,@-~) is Mn x M3 matrix, and x F - ~ )  is M2 x M3 
matrix. Of the Mn equations for boundary temperatures 
in the matrix equation (21), only MI equations, corre- 
sponding to MI boundary sensor locations, are to be 
used for the determination of the unknown boundary 
heat flux. These equations are combined with M2 equa- 
tions represented by the matrix equation (22). The result 
can be written as 

where f ( k )  is the vector of temperature measurements on 
the boundary and inside the object at time kAt, f:) is the 
vector temperatures at these sensor locations when 
Zb) = 0 from j = 1 to k, and x(~-J)  is (MI + M2) x M3 
matrix. 

4. Sequential function specification method 

The sequential function specification algorithm that 
makes use of piecewise linear functions for boundary 
heat flux and the assumption of linearly varying heat 
flux over future time was described by Chantasiriwan 
[ll]. However, that algorithm is restricted to one-di- 
mensional problems. The present paper will demonstrate 
that the algorithm can be extended to deal with multi- 
dimensional problems. 

Suppose that 8) to Z(k-L)  are known from earlier 
calculations of heat flux, and z(k) is to be determined in 
the next calculation. Eq. (8) can be rewritten as 

The sequential function specification method uses r 
future-temperature measurements ?('I (where i ranges 
from k to k + r - 1) to estimate Z ( k ) .  Eq. (24) actually 
represents r matrix equations with r unknown vectors 
(Z(k+l),  Ztki2), . . . , Z(k+ r- l ) ) .  In order to reduce the 
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number of unknown vectors to one, the following rela- 
tions between 8) (j = k, k + 1 ,  . . . , k + r - 1) and Z(k- l ) ,  

Z(k)  are specified: 

Zli, = (j- k + 1 ) p  - Cj - k)Z(k-l), (25) 

Substitute Eq. (25) into Eq. (24), and rearrange the 
result: 

k- 1 

Now define the following vector: 

which has r(Ml + M2) components. Also define the fol- 
lowing r(M1 + M2) x M3 matrices: 

and 

The r matrix equations represented by Eq. (26) can be 
rewritten as 

b 

Following the procedure in [ll], we then seek the 
expression of the heat flux in terms of temperature 
measurements: 

M3 x r(M1 + Mz)  matrices D ( ~ )  can be expressed in terms 
of B(i) as follows: 

where I is the r(Ml + M2) x r(Ml + M2) identity matrix 

for 1 < k < N - 1. If the number of temperature sensors 
is greater than the number of unknown heat flux com- 

ponents, matrices D(') and BG) may be rectangular, and 
the linear least-squares method should be used to de- 
termine D ( ~ ) .  Subroutine DGELSS.F in the numerical 
package LAPACK (available at http://www.netlib.org/ 
lapack) may be used for this purpose. 

5. Assessing the quality of the solution 

The quality of a solution to IHCP depends on its 
variance and deterministic bias. Variance measures the 
sensitivity of the solution to temperature measurement 
errors. In general, these are statistical errors. It is ex- 
pedient to make the following statistical assumptions 
about them: 
1. Additive errors: q(k) = &(k) + E?). 

2. Zero mean errors: E($) = 0. 
3. Constant variance: V(E]*\) = 0'. 
4. Uncorrelated errors: E ( E ~  )E?) )  = 0 if i # j or k # 2. 
The estimated heat flux component i at time kAt can be 
expressed in terms of temperature measurements as 

The above assumptions, together with Eq. (35), yield the 
following expression for variance of z?): 

It is evident from Eq. (36) that variance of each esti- 
mated heat flux component increases monotonically 
with time index. Hence, maximum variance for com- 
ponent i is v(z,(*'). 

When measurements are error-free, q(k) = c(k), the 
calculated heat flux should closely approximate the true 
heat flux. Deterministic bias A indicates how good the 
approximation is: 

where ZE;,,, is the actual heat flux component i at time 
kAt. In general, variance and deterministic bias will vary 
from component to component. Let us denote the 
maximum v(z , (~))  by V,,, and the maximum Ai by A,,,. 
The quality of the solution to IHCP can now be char- 
acterized by V,,, and A,,,. Normally, both low variance 
and low deterministic bias are desirable. Unfortunately, 
when the variance of the solution to IHCP is reduced, 
the deterministic bias will normally increase, and vice 
versa. A good method for solving IHCP, like the se- 
quential function specification method, will allow the 
user to arrive at the optimal solution, which has the 
desired trade-off between variance and deterministic 
bias. 
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6. Sample p m b  

The sample problem is illustrated in Fig. 1. A squan 
object of unit length is subjected to heat flux on sides AB 
and BC, and insulated on the other two sides. Temper- 
ature measurements are taken from 13 equally s@ 
sensors located at a distance of x from AB and BC. The 
algorithm described earlier will be used to determine 
heat flux wmponents on AB and BC using the tem- 
perature measurement data. For the purpose of gener- 
ating such data, the heat Bux on AB and BC is specified 
as shown in Fig. 2, which yields the following temper- 
ature distribution: 

( U(x,y,t) for tG0.5, 
U(x,y,t) - ZU(x,y, t - 0.5) 

Tk.v . t )  = 1 for 0.5 < fG1.0, (38) - ~ ..., 

I U(x,y,t) - 2 ~ ( x , ~ ; f  -0.5) 
+U(x,y,t - 1.0) for I > 1.0, 

where 

u(x,y,t) = 1.5I+t(O.S2-x+?-Zy+l) 

Note that the above analytical solution for this two- 
dimensional problem is the superposition of two solu- 
tions to onedimensional problems, which can be easily 
found [I]. 

Temperature measurement data at 13 seasor loca- 
tions will be assumed to be given by T(x,y, I). They will 

insulated 

Fip. 1. Sample problem. The square object has the unit length. 
Unknown heat flux is applied to sides AB and BC. The other 
two side8 are perfectly insulated. Wlte circles represent tem- 
pnature sensors. 

H u t  flu 

Fig. 2. Actual heat flux in the sample problem. 

be used to estimate heat flux on AB and BC, which will 
then be compared with the actual heat flux (Fig. 2) to 
assess the accuracy of the solution. For wmputational 
purpose, the boundary is divided into 48 equal elements. 
9 s  problem is simplified by the fact that g' = 0. Hence, 
Yo vanishes. The time step used for estimating the heat 
flux wmponents is 0.05, and the calculation is per- 
formed from time 0 to 1 .O. Hence, N = 20. 

Although there arc 13 nodes on AB and 13 nodes on 
BC, the numbcc of unknown heat flux wmponents to bc 
determined will have to be less than 26. This is so be- 
cause there arc only 13 sensors. It has previously been 
suggested that the number of estimated heat flux wm- 
ponents should be less than the number of sensors [I]. 
The proposed algorithm was tested with the case in 
which there were more estimated heat flux wmponents 
than aensors, and it was found that no stabifid solu- 
tion existed. Therefore, the number of nodes where heat 
flux wmponents will be estimated from the proposed 
algorithm will have to he less than 13, and heat flux 
components at the remaining nodes can be found by 
linear interpolation of the estimated heat flux wmpo- 
nents. For this sample problem, let $2 denote the 
vector of n unknown heat flux wmponents on AB to be 
determined from the inverse algorithm (n < 13). while 
ei denotes the vector of heat flux wmponents at the 13 
nodes on AB. In order for the unknown heat flux 
wmponents to be equally s@, n is limited to 7, 5, 4, 
3, and 2. The relation hetween .?! and $2' is 

p) - H p) 
AB - n AB I (40) 

where the wmponents of the 13 x n matrix H. are 
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Other wmponents are zero, 

7. Results and disclmion 

First, let us consider the case in which the 13 
sensors are placed at x = 116 from sides AB and BC, 
on which 10 heat flux wmponents are to be deter- 
mined. The resulting heat flux wmponents are plotted 
in Fig. 3 for r = 1. It can be seen that though the 
actual heat flux is constant in space, there is a vari- 
ation among the estimated heat flux wmponents. Such 
a variation will increase rapidly as sensors are placed 
farther from AB. The regularization method, as used 
by Al-Khalidy (1, can suppress it. In this paper, an 

Fig. 3. Estimated heat flux for n = 10, r = 1, and x = 1/6. 

A A 

alternative method will be used. If the number of 
sensors is kept constant at 13, the estimated heat flux 
will become smoother as the number of heat flux 
wmponents decrease from 10. Fig. 4 illustrates how 
the number of unknown heat flux wmponents along 
AB and BC may be reduad. 

Comparison between the solutions to the sample 
problem with 10 and 6 estimated heat flux wmponents is 
shown in Fig. 5, in which composite curves of variations 
of heat flux wmpouents as functions of time are plotted. 
Fig. 5(a) is simply the view of the plot of Fig. 3 in the 
direction parallel to line ABC. It is evident that, with 
lower n, there is less variation among heat flux wmpo- 
nents. However, it should be kept in mind that 
restricting the number of estimated heat flux wmpo- 
nents may yield an inaccurate solution if the actual heat 
flux fluctnatcs in space with high frequency. In any case, 
the solution will be less sensitive to temperature 
measurement errors if there are fewer heat flux wmpo- 
nents to estimate. 

Another way to red= sensitivity to temperature 
measurement errors is to make use of 'future-time' 
measurements. The results shown in Fig. 5 are obtained 
by using future-time parameter r = 1. This means that 
no measurements taken later than (k + I)At are used to 
estimate unknown heat flux wmponents at time kAt. By 
allowing r to be greater than 1, the variance of the 
solution will be reduced. Fig. 6 compares results for four 
cases having different r. Indicated on each figure are the 
values of maximum variance and maximum &termin- 
istic bias for each case. It can bc s a n  that the solution is 
less sensitive to measurement errors as r is increased. 
However, by using more future-time measurements (or 
increasing r), the solution becomes less m a t e  not only 
in time but also in space as there is greater difference 
among the estimated heat flux wmponents. 

Another important factor that affects the variance 
and &terministic bias of the solution is the locations of 

Fig. 4. Reducing the number of estimated heat flux components while keeping the number of ssosors at 13. Solid circles denote lo- 
cations of unknown heat flux commnents to be estimated from the inverse aleorithm. Heat flux Mmwnents at other boundarv nodes - 
may be determined from interpolation. Note that though one node is shown at point B, there an actually two heat flux components at 
that corner. 
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1.2 1.2 

1.0 1.0 

0.8 0.8 

Heat flux Heat flux 
0.6 0.6 

0.4 0.4 

0.2 0.2 

0.0 0.0 

Fig. 5. Composite curves of variations of heat flux components as functions of time for (a) n = 10, (b) n = 6, x = 116, and r = 1. 
Dashed curves and solid curves represent, respectively, heat flux distribution along AB and BC. 

1.2 

V,, = 88290' 
1.0 - 

0.8 - 
Heat flux 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

(a) Time 

Heat flux 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

(4 Time 

1.2 

1 .o 

0.8 
Heat flux 

0.6 

0.4 

0.2 

0.0 

(b) Time 

Fig. 6.  Variations of heat flux components with time for (a) r = 1, (b) r = 2, (c) r = 3, and (d) r = 4. Dashed curves and solid curves 
represent, respectively, heat flux distribution along AB and BC. Other parameters are x = 1/12 and n = 8. Maximum variance and 
maximum deterministic bias are shown for each case. 

. .- 
1.0 - 

the sensors. In Fig. 7, the results from four cases are 
compared. For each case, the number of heat flux 
components is six, and there are 13 sensors. The place- 
ment of sensors is illustrated in Fig. 1. It can be seen that 
the solution is more accurate and less sensitive to tem- 
perature measurement errors as sensors are placed closer 
to AB and BC. For the case where x = 113, variance is 
very large, and the estimated heat flux components will 

V,,, = 4050' 
A,,, = 0.0643 

be very sensitive to even small statistical fluctuation in 
temperature measurements. It is also found that the 
maximum number of heat flux components that can be 
estimated using the inverse algorithm when sensors are 
placed at x = 113 is six. Increasing this number will not 
only increase variance but also give rise to an unstable 
solution, which oscillates strongly with time. Thus, there 
seems to be a limit to the number of heat flux compo- 

Heat flux 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

(4 Time 
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1.2 I1 

1.0 In 

as 0.8 
Hat flol usdam 

a6 0 6  

ar a* 

a 2  0.2 

ao on 
on 0.1 0.2 0 3  0.4 OJ a6 a 7  o+ as la a 0  a 1  0.2 0.3 a* OJ as 0.7 a s  0.9 1.0 

(c) ~ i m c  (d) nm 

Fig. 7. Variations of heat flux components with time for (a) x = 1/12 @) x = 116, (c) x = 114, and (d) I = 113. Dprhed mms and 
solid curves rrprescnl, recpcctinly, heat flu distribution doog AB and BC. Other paramam are n = 6 and r = 2. Marimurn varian~c 
and maximum deterministic bias arc shown for each case. 

nents that can he estimated for given number and lo- 
cations of sensors. 

It is interesting to compare the proposed sequential 
function specification algorithm with an alternative al- 
gorithm in which heat flux is assumed to be constant 
rather than varying linearly with time. This alternative 
algorithm was proposed by Beck et al. [I]. In order to 
usc it, the present algorithm must he slightly modi6ed. 
The following equations are to replace Eqs. (28)-(30): 

Fig. 8 shows solutions obtained by the alternative al- 
gorithm. It should he compared with Fig. 7(a). The 
proposed algorithm appears to yield a better solution 
b u s e  it gives lower variance and lower deterministic 
him. In a previous work by Chantasiriwan [ll], it was 
shown, for the onbdimensional IHCP, that the al- 
gorithm using the assumption of linearly varying heat 
flux was superior to the algorithm using the assumption 
of constant heat flux. The present work confirms pre- 
vious results in the cax of the multidimensional IHCP. 

Fig. 8. Estimated heat flux for x = 1/12, n = 6, and r = 2 
obtained by using the alternative algorithm. 

8. Conclusion 

The multidimensional IHCP may be solved numeri- 
cally by the sequential function specification method 
using the aswmption that heat flux varies linearly with 
time. The method of dimetization used should be the 
boundary element method because it is able to deal with 
a rb i t rq  geometry and requires only boundary mesh 
generation. The quality of the solution depends on 
variance, which indicates how sensitive the solution is to 



errors in temperature measurements, and deterministic 
bias, which indicates the difference between the esti- 
mated heat flux and the actual heat flux. By decreasing 
the number of estimated heat flux components, in- 
creasing the future-time parameter, or  placing sensors 
closer t o  the boundary of unknown heat flux, the vari- 
ance of the solution will be reduced. However, there is 
usually a trade-off between variance and deterministic 
bias. Decreasing the number of heat flux components 
will lead t o  the inability to reproduced actual heat flux 
that varies strongly in space, and increasing the future- 
time parameter will result in a less m a t e  solution. 
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