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ABSTRACT: Prc\'ious studlcs hy Dc %oysa anti Chuchccps;~kul on il ~hrcc-dimcn- 
sion;ll static analysis of marine c;rt,lcs yicldcrl contr;ldictory results for ;In cxaniplc 
problcnl. This work addresses this discrcp;~nc! and furnishes the correct cxprcssions 
for the set of diffcrcntial equations governing the cablc problem. The so-c:illcd 
shooting-optimizlrion mcttiod is proposed i1s a solution tcchnicluc. Dc Zoys;~'s cal,lc 
prol)lcm was rcsolvcd. and prcscntcd hcrcin arc tllc corrccr vari;~tions of t l ~ c  rcnsion 
cornponcnts 31 thc hortom end of thc c;iblc \vith rcspccr to difl'crcnt angles bctwccn 
thc occ;~n currcnt direction and rhc projection of the ship-to-buggy linc onto thc 
horizonli~l pli~nc. 

Ttic marly ;~pplications of rnariric cablcs (such as in occ;~riograpliic rc- 
search. hydrogrilphic surveying, salvi~gc, tclccon~n~unications, fishing, tow- 
ing and offshore technology) require accurate analysis to predict their static 
i l ~ i t l  clyri;~rnic behavior. The  :lnalysis is ctiallcngirig bccau'sc of the difficulty 
in rriodclirig tlic tiydrodyni~mic Sorccs (wtiicli cicpcnds on tlic prcv:~ilirlg 
physical corlditions) i~rid the ~ i c c d  !'or :I rcli:~blc :111d cfficicnt solution tcch- 
nicluc for dctcrn~ining tlic c:~blc profile ;tncl tcrisions. 

At ;I recent Asian-I'acific Confcrcricc on Corriputation:~I Mc~Ii;~riics held 
iri I-Iorig Ko~ig ,  Cl i~~chccps :~kul  ( 109 I ) prcscritcd a variatiorial (finite clc- 
riicrit) riict tiocl for the t tircc-dimcrisiori;~l static :~nalysis of niarinc cables. 
IIIustr:~ti~ig Iiis rnctliod with :I cal,lc problcrri considcrcti by Dc Zoys:~  (1078), 
hc dctcrriii~icd the vari:~tiorls of the crid tension components with rcspcct 
to diffcrcrit horizontal ariglcs madc by thc currcnt with thc ship-to-bucrzy 
line. The  results for tlic vertical tcnsilc component arc showli to be sigGrf- 
icaritly diffcrcrlt from those obtained prcviously by D c  Zoysa who used the 
shooting method. This puzzling discrepancy is the motivating factor for this 
study. . 011 closcr exaniinrltion of the problem, i t  was discovcrcd that previously 
presented forms of the governing differential equations are not correct and 
thus the solutions obtained hitherto are erroneous. In view of the presence 
of modulus signs in the differential equations, Chucheepsnkul's proposed 
variational approach cannot be used in its present form and appropriate 
modifications must be made to cater for these signs if  i t  is to be used. 

This paper presents the foverning set of differential equations and the 
shooting-optimization tcchn~que (Wan: and Kitipornchai 1992) for solution. 
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De Zoysa's cable problem is resolved anti the correct tension var~*,tio^ns and 
cable profiles are presented. 

Referring to Fig. I ,  the equilibrium equations of a differential segment 
of an immersed cable c3n be shown to be given by (Berteaux 1976) 
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in which T = tension in the cable; = effective weight of cable; s = 
cable scope measured from the bottom end of the cable; ct, = angle between 
the horizontal .r-y plane and the tangent vector e,; and O = angle between 
the .r axis and the projection of the tangent vector u, in tlie 1lorizorit;ll pI;111e. 

Defining the .r axis in thc direction of the current velocity V arid usirig 
Wilson's model, the h),drodynarnic force coniporlerlts irl [llc t l~ rec  vuctor 
directions e,, e,,, c,, (SUC Fis. 1). c;111 sho\vri to be ~ I ' V C I I  h y  
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in wllicli p,,. = dcrlsitv of sea water: C',,, arid C,,,, = tangcriti:~l ;lrlcl  11orni;il 
drag cocfficicnts: ;ind4D = di~lrtletur of tlic c:lblc. Notu t l l i l t  (-I)-((>) ~ 0 1 l t i l i 1 1  
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FIG. 1. Coordinate System for Marine Cable and Free Body Diagram of ible 
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nioclulus signs to ;~ccoun t  for the changing force directions in ; r  t t~rcc-di -  
nicnsiorl:~l situation. Thcsc  niodulus sigrls arc i~bscnt  i n  Bc r t c ;~us ' s  csprcs-  

\-- 

~ i o n  [scc  equations (4 .90)-(4 .03)  011 pp.  144-145 i n  U c r t c i ~ u ~  (197S)I. 
For convcnicncc and  generality. the f'c)llo\iping norldirncnsional parameters  

arc  introduced: -7 = sIH; I = - ,v//-/: = !b/H; f = z i H :  /-? = f</lr: L = 
LIH:  r = 7 i ( H f , . I I ) :  = L'IVgH: and u = p,,.gDl-I:(7W,). I n  thc nondi- 
mcnsional parameters .  R = projected length of the ship-to-bucclr LL. line on 
thc seabed ;  H = depth  of the seaivatcr: L = cablc length; and g = grav- 
itational accelerat ion.  T h e  origin of the Cartesian coordinate system is taken 
at the bot tom end  of the c ; ~ b l i ,  s = 0. Note that H \{.as used to nondimen- 
sionalize thc  parameters  instead of L because in  general the depth of the 
sea is :I kno\ien clui~ntit/.. while L m:~y  bc an unkno\i.n parameter.  

I n  ilicii, 01' ttiese nondimcnsional  pilr:lmctcrs, ( 1 ) - (3 )  together with (4 ) -  
( 0 )  and the initi~rl condit ions may bc ~vr i t tcn  as 
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T h c  terminal  boundary conditions for such cable problems a r e  usu;illy given 
by 

. i ( l )  = /%' = normalized .v-coordinate of the cable's top end . . . . . . .  ( 13) 

!;(I) = 7 = normalized y-coordinate of the cable's top end . . . . . . .  (14) 

 rid depending on  \vhetIicr the top  tension force o r  the length of the cable 
is L civen, the  follo\ving respective end condition is to be sa t~sf ied:  

I 

. . . . . . .  7'(l) = F = tension forcv parameter  at  the top  end of cable ( 15) 

i ( 1 )  = i = length pararneter  of the cable . . . . . . . . . . . . . . . . . . . . . .  (16) 

T h e  governing six first-order differential equations (7)-(12) together with 
the six known end  condit ions may be solved for  7. 0 .  cb.f,)i, $ as functions 
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, or  i. In such marine cable problems, the top tension force may be the known 
ciuantity, while the cable length is unknown or vice versa. In the former 
case, the cable solutions may be determined by considering the first five 
differentia! equations (7 ) - ( l l ) ,  since the variation of the cable scope S with 
~e spec t  to f is not needed (unless the length of the cable is to be determined). 
In the latter case, where the cable length L is known and the top tension 
is unknown, then either one considers all the six differential equations (7)- 
(12), or one opts for solving the first five differential equations subject to 
the satisfaction of the constraint due to (12), i.c. 

1 

i - J0 cosec + di = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (17) 

The foregoing boundary value problen~ may be solved usirig the shooting- 
optimization technique. This technique is basicsly the shooting method, but 
instead of solving a set of algebraic equations formed from the difference 
(or error) between the prescribed and computed terminal boundary con- 
ditions, the error norms are minimized by an optimization algorithm. We 
present the method as applied to the cable problem, where we shall use the 
fact that only five differential equations need to be considered. 

First, the differential equations are integrated forward using, say, thc 
4 

fourth-order Runge-Kutta algorithm. Specify the step size of integration 11, 
and the initial values at I (0)  = 0: i ( 0 )  = y(0) = 0, T(O) = c,; R ( 0 )  = C 2 ;  
and +(0) = 5,. For rr = 0,  1 ,  3. . . . .  (1111 - 1) do:  

C , )  = I f  n )  T I ,  ( I )  ( I )  ( r  ) ( I )  . . . . . . . . . . . . . . . . .  ( 1')) 

I1 ,- Cl I C, I 
C,,jn) = If, i ( t 1 )  + 5, r(t1) + y, O(t1)  + - C ,  I i - - 3, 

, ( b 0 1 )  + - 
c.1 , 

I ( n )  + 7, Y(t1) + - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
7 

(20) - - I 

1 
. . . . . . . . . . . . . . .  fI,(t1 + 1) = fI,(t1) + - [C,, + 'C,, + 2C13 + C,,] ( 2 3 )  
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where R, = f; R, = 0 :  R, = 6: R, = i: and R, = 6 .  , 
Next, the sum of the L ,  error norms given by the diffelence in values of 

. f ,  y ,  and T, and the prescribed terminal boundary conditions of (13). ( 14), 
and (15) is minimized by any standard direct search-optimization technique. 
If  the top tension is unknown and the cable length is known, then the error 
norm for T is substituted by taking the absolute quantity of the LHS of 
(17). The objective function for the optimization exercise is t h e n  given by 
either ,,a) For given top tension while cable length is unknown 



Min (1) = I l ( l )  - XI + ( \ ' ( I )  - + I ? ' ( I )  - F.1 . . . . . . . . . . . . . . .  (24) 

or  (b) For given cable length while top tension is uriknown 

I t  is clear that the desired value of (1) is zero for the solution. For the 
optimization algorithm, we have used the simplex method of Nelder and 
Mead (1963). 

I t  should be remarked that the integration of the differential equations 
(with respect to f coordinate from the seabed to the surface) has the implicit 
constraint that the cable profile must lie i n  the positii-c domain of 2 .  This 
constraint is desirable. 2s the cable is expected to be above the seabed. 

Min 4) = l.f(l) - ,TI + I$(!) - + 
C,.C2.C3 

Iiertcaus's 'I'wo-Dinlensional Cable  Problem ( 1976) 
Before solving Dt. Zoysa's three-dimensional cable problem, wc test the 

shooting-opti~mization method on a two-dimensional cable problem solved 
il l  13crrc:itrs's (1970) t ~ o o k .  Considcr ;I surface b t~oy (hilt is moored with a 
c :~ t~lc  01' ciiiinlctcr I )  = 6.35 Inm. and subnlcrgcd \vcigt~t of MI,. = 1.4028 
Nlnl irl ;I water depth o f  /-I = 2,000 m. The specd o f  the unil'orril current 
is V = 0.702 1111s. The  density o f  scaivatcr is taken to bc I),, = 1,025 
kglnl'. ancl let the cxcursiorl S = 1.280 n l .  the cocfficicnts C,,,, = 1.54 and 
C',,, = 0.0154. ?'he problem is to dctcrmir~c thc cable lcngtli L. the i~ngle 
(0 at thc l~ot tonl  a r ~ d  top ends o f  thc cable for ;I given tcnsior~ of /- = 1 I ,  1466 
k N  at the-buoy. 

Based or1 the preceding information, somc of thc input parameters for  
the shooting-optimization method arc 

. (25) 

and the objective function is given by 

Using an integration step size of h = 0.05. the shooting-optimization 
nlethod yields results which are tabulated in Table 1. The close agreement 
of these results ivith previously obtained ones by Berteaus (1976) and Chu- 
cheepsakul and H u a n ~  (1990) provides a confirmation to the validity and 
accuracy of the method. Berteaux used Wilson's tables of caple functions, 

TABLE 1. Numerical Comparison of  Two-Dimensional Cable Problem 

(1) 

Cable length (rn) 
4) ( z  = H) (dcgrces) 
6 ( z  = 0) (dcgrccs) 

4\54 
I * 

Berteaux 
(1 978) 

(2) 

3,03C, 
90 ,d 
35 i9 

Chucheepsakul 
(1 991) 
(3) 

3.016 
90.1 
35.7 

Present study 

(4) 

3.013 
00.2 
36.3 



and Chucheepsakul used 20 elements for his variational (finiie elelne~lt) 
method. For this two-dimensional cable analysis, thc variational method 
proposed by Chucheepsakul can bc used because the terms in the modulus 
signs in the differential equations are positive for the, entire len4th .- of cable. 

De Zoysa's 'Three-Dimensional Cable Problem 
A sea buggy on the seabed is to have its power supplicd by a cable ;IS 

shown by Figs. 1 and 2. The follo~ving set of information is given: 

Speed of uniform current, V = 3.7 kmlhr 
Water depth. H = IS3 rn 
Ship-to-bugsy distance along u seabed. R = 229 m 
Length of cable, L = 305 m 
Net weisht of cable, IV, = 12.3 Nlnl 
Cable d~amete r .  D = 0.023 rn 
Normal drag coefficient. Co,, = 1.0 
Tangential drag coefficient, C,,, = 0.005 
Density of seawater, p,,. = 1021 kg/rn3 

Ttic problem is to determine the cable prot'ilc and tc~ision cornporic~its (T,, 
T,,. T,) at the buggy end for various angles ~b,, bctwccn tllc .r asis aricl thc 
projected ship-to-buccy -- line onto the I~orizorital pli~nc. 

The specified tcrn1in:ll boulidary conditiolis arc 

This rllc:iris that tlic o1)jcctivc furlctiorl to be r~lillirliizctl iri tlic sllooti~lg- 
optimiz;~tion tcchriiqucs is dct'incd :IS 

in which 5 ,  = j(0) : <, = O(0); ;ind 5,(0) = (b(0). 
The input parameters arc 

x 1 

FIG. 2. Plan Vlew of Ship and Buggy 
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Applving the shooting-optimization technique, the variations of the ten- 
sion cokponents at the buggy end are plotted in  Fig. 3. Note that a con- 
vcrgcnce study shows that the integration stcp (for the Kunge-Kutta algo- 
rithm) of  I I  = 0.OS is sufficient for reasonably accurate solution. Comparing 
the results with those obtained by ~ h u c h & ~ s a k u l  (1991) and Dc Zoysa 
(1975), ~vhich are shown i n  the inset, i t  can be seen that the tension corn- 
poncnts are not the same in magnitude, but the trends in the tension var- 
iations art. some~vhat similar. 

I t  appears that the results of the previous researchers are erroneous. For 
example, when +,, = 90°, their tension component in the s direction T, is 
close to zero. The present calculations sho~v that T, .=: 1.580 N ,  which is a 
more reasonable solution, as one ~vould espect that the cable's slope at the 
buggy end should not bc pcrpcndicular to thc current clircction. This con- 
dition is. however, implied i r l  tllc pre\fiousl>' obtaincd solution of '/', == 0. 
Furthcrn~orc, :I rerun of Chuchccpsakul's \,:~riation:ll n~cthod software for 
the special c;iscs of J J , ]  = 0" and L ~ J , ,  = 180' (wherc thcsproblcm reduces to 
a two-dirncrlsion:ll one) yielded solutions close to thc prcscrlt results. 
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, The steady-state or static analysis of marine cables requires the solving 
of r l  set of nonlinear differential equations. As shown herein. this can be 
done u:ing the shooting-optimization method. It is important to note that 
the differential equations should contain modulus signs to account for the 
changing force directions and Chucheepsakul's variational method should 
bc ~nodit'icd to catcr to thest: signs. 

Although a uniform current velocity has been assumed in the problrnls 
considered herein, the shootins-optimization method can rcadilv handle any 
variation of the velocity profile with respect to the water depth. 
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