A VARIATIONAL FORMULATION FOR A THREE-DIMENSIONAL EXTENSIBLE MARINE PIPE TRANSPORTING FLUD

Chainarong Athisakul. Somchai Chucheepsakul
King Mongkut's University of Technology Thonburi, Bangkok. Thailand
and Tseng Huang
University of Texas at Arlington, Arlington, TX, USA

Abstract

The purpose of this paper is to develop a three-dimensional model formulation of an extensible marine pipe transporing fluid via a variational approach. The elastica theory of extensible rod and the kinematics theory of mass transported on the moving frame are used to obtain the model formulation. The three deformation descriptions referring to the Cartesian coordinate are considered. they are the total Lagrangian, the updated Lagrangian, and the Eulerian. By the principle of virtual work-energy, the Euler equations is derived and can be validated by the vectorial summation of forces and moments.

KEYWORDS: Three-dimensional pipes transporing Iluid, Large displacements, Large strain, Extensible pipe. Variational formulation. Elastica

INTRODUCTION

In literature, there are a limited number of research on threedimensional analysis of marine pipes/risers, for example. Doll and Mote (1976), Bernitsas (1982), Felippa and Chung (1981). Huang and Kang (1991), Kokarakis and Bernitsas (1987), and Chung et al. (1994 a\&b. 1996). All of these studies considered the effect of axial deformation using small strain analysis. Unfortunately. for highly flexible pipes, this constraint is no longer applicable.

Recently, Chucheepsakul et al. (2003) proposed a model formulation, which signifies the effect of large avial deformation and fluid transportation. The elastica theory was used to develop the twodimensional model. Numerical demonstrations are given in Chucheepsakul et al. (2001) and Chucheepsakul and Monprapussom (2001). For a complete model, a three-dimensional formulation including the effect of torsion should be developed.

The objective of this paper is to develop the model formulation of marine pipe/riser experiencing large displacement and large deformation in three-dimensional space. The formulation is developed by variational approach based on the elastica theory and the workenergy principle. The strain energy of the pipe composes of strain energy due to large axial deformation, bending. and wisting. Large axial strain consideration is investigated in three deformation descriptors, namely the total Lagrangian, the updated Lagrangian, and the Eulerian. The apparent tension concept and the dynamic inceractions between fluid and pipe are used to derive the external
virual works of the pipe. The variational formulation is validated bs the vectorial formulation, which considers the equilibrium of forces and moments of a three-dinensional pipe/riser segment.

ASSUMPTION

The following assumptions are used to stipulate the present formulation. a) The material used in the pipe is linearly clastic. b) The pipe is initially straiglt and has ne"residual stress at the undeformed state. c) The pipe's cross sections remain circular after change of crosssectional size due to the Poisson effect. d) Longitudinal strain is large. while the effect of shear strain is small and can be neglected. so that the Kirchhoffs rod theories are usable. e) Every cross section remains plane and remains perpendicular to the axis. I Radial lines of the sections remain straight and radial as the cross section rotates atrout the axis. g) The intemal and emermal fluids are insiscid. incompressible and irrotational. Their densities are uniform along are-length of the riser. h) The intemal flow is the one-dimensional plug laminar flow. i) Morison's equation is adopted for evaluating external hydrodynamic forces of external fluid. j) The effect of rotary' inertia is negligible

Figure 1 . Three configurations of marine pipe.

MODELING AND PHYSICAL DESCRIPTIONS

The marine pipe is modeled to be throe-dimensional rod with a ball joint at the bottom end and a slip joint at the top end. The three configurations of the pipe are depicted in Figure 1. At the undeformed configuration, the pipe is at rest and unstretched. Then, the pipe is subjected to the time-independent loads and its configuration changes to equilibrium configuration. Finally, at the displaced configuration, dynamic actions such as wave, unseady current, and unsteady internal fow disturb the pipe to sustain vibration about the equilibrium configuration.

In this paper, three orthogonal coordinate systems are used to define position, motion, and deformation of an extensible marine pipe. The orthogonal triad system $\bar{i}, \bar{n}, \bar{b}$ and the cross-sectional principal axes system ' x_{1}, x_{2}, ' x_{1} with unit normal vector ' e_{1},' e_{3} ' e_{1} are used as the local coordinate. The fixed Caresian coordinate system ' x, ${ }^{\prime} y$. $=$ with unit normal vector $\hat{i}, \vec{j}, \hat{k}$ is used as global coordinate. The lefi superscript represents the state of marine pipe where 0 represents the undeformed state; 1 represents the equilibrium state and 2 represents the displaced state. therefore, $i \in(0.1 .2)$.

Figure 2. Segments of the extensible marine pipe in three states.
Figure 2 shows the segments of the extensible marine pipe in three states. Since the centerline of the riser at any time t is. in general. a three-dimensional curve and can be described by one parameter. the parameter $\alpha, \alpha \in\left\{{ }^{\prime} x, y^{\prime} y^{\prime} '^{\prime}, ' s\right\}$, that is employed in the formulation for the sake of generality. Therefore if ' x.' y, and ' $=$ are the coordinates of a point along the marine pipe at time t, then ' $x=$ ' $x(\alpha$, ' $t)$. $' y={ }^{\prime} y\left(\alpha,{ }^{\prime} t\right)$, and ${ }^{\prime} z={ }^{\prime}=(\alpha, ' t)$. The partial derivatives with respect to α and time ' t are represented by superscripts () and () respectively.

MEASUREMENTS OF AXIAL STRAINS

In Cartesian coordinate, the relations of differential arc-length at the undeformed state, the equilibrium state and the displaced state ('s'. 's'and 's') can be expressed as

$$
\begin{gathered}
x^{\prime}=\sqrt{{ }^{\prime} x^{\prime \prime}+{ }^{\prime} y^{\prime \prime}+{ }^{\prime} z^{\prime \prime}} \\
s^{\prime}=\sqrt{x^{\prime} x^{\prime}+{ }^{\prime} y^{\prime \prime}+{ }^{\prime} z^{\prime \prime}}=\sqrt{\left({ }^{0} x^{\prime}+{ }^{\prime} u^{\prime}\right)^{\prime}+\left({ }^{0} y^{\prime}+{ }^{\prime} v^{\prime}\right)^{\prime}+\left({ }^{\prime} z^{\prime}+{ }^{\prime} u^{\prime}\right)^{\prime}}
\end{gathered}
$$

$$
\begin{aligned}
& '^{\prime}=\sqrt{\prime x^{\prime 2}+{ }^{2} y^{\prime 2}+{ }^{2} z^{\prime 2}}=\sqrt{\left(9 x^{\prime}+{ }^{\prime} u^{\prime}\right)^{2}+\left(" y^{\prime}+{ }^{\prime} v^{\prime}\right)^{\prime}+\left(-z^{\prime}+{ }^{\prime} x^{\prime}\right)^{2}} \\
& z^{2} s^{\prime}=\sqrt{\left({ }^{\circ} x^{\prime}+{ }^{\prime} u^{\prime}+u^{\prime}\right)^{3}+\left(\cdot y^{\prime}+{ }^{\prime} v^{\prime}+v^{\prime}\right)^{\prime}+\left({ }^{\prime} z^{\prime}+1 u^{\prime}+u^{\prime}\right)^{\prime}}(1 \mathrm{a}-\mathrm{d})
\end{aligned}
$$

According to the mechanics of a deformable body, the definition of axial strain can be provided in throc forms, namely the Total Lagrangian Descriptor, the Updated Lagrangian Descriptor, and the Eulerian Descriptor. Each of these forms can be demonstrated as follows.

Total Lagrangian Descriptor (TLD)

The coordinate that follows motion and deformation of a deformable body with respect to position, direction, and size of the body at the original state (or undeformed state herein) is said to be the total Lagrangian descriptor.

Total strain $\quad-\bar{\epsilon}=\frac{d^{2} s-d^{\circ} s}{d^{\prime} s}=\frac{d^{\prime} s}{d^{0} s}-1=\sqrt{I+2\left({ }^{\prime} L\right)}-1$
Static strain $\quad \bar{\varepsilon}=\frac{d^{\prime} s-d^{*} s}{d^{d} s}=\frac{d^{\prime} s}{d^{0} s}-I=\sqrt{I+2\left({ }^{\prime} L\right)}-1$
Dynamic strain $\bar{\varepsilon}=\frac{d^{2} s-d^{\prime} s}{d^{0} s}=\sqrt{1+2\left({ }^{3} L\right)}-\sqrt{1+2\left({ }^{\prime} L\right)} \quad$ (2 a-c)
The Green strains in each state that represents in equation (2) can be derived in the terms of displacements of the riser as follows.

$$
\begin{aligned}
& i_{L}=\frac{1}{\left(x^{\prime}\right)^{2}}\left(x^{\prime}\left(u^{\prime}\right)+" y^{\prime}\left(v^{\prime}\right)+z^{\prime}\left(u^{\prime}\right)+\frac{\left(\therefore u^{\prime}\right)^{\prime}}{2}+\frac{\left(v^{\prime}\right)^{\prime}}{2}+\frac{\left(\therefore u^{\prime}\right)^{\prime}}{2}\right) . \\
& { }^{\prime} L=\frac{1}{\left(i^{\prime}\right)^{\prime}}\left({ }^{\prime} x^{\prime}\left({ }^{\prime} u^{\prime}\right)+{ }^{0} y^{\prime}\left({ }^{\prime} v^{\prime}\right)+{ }^{0} z^{\prime}\left({ }^{\prime} w^{\prime}\right)+\frac{\left(\prime^{\prime} u^{\prime}\right)^{\prime}}{2}+\frac{\left(v^{\prime}\right)^{\prime}}{2}+\frac{\left({ }^{\prime} u^{\prime}\right)^{\prime}}{2}\right) \\
& L={ }^{\prime} L-{ }^{\prime} L=\frac{1}{v^{\prime}}\left(x^{\prime} u^{\prime}+{ }^{\prime} y^{\prime} y^{\prime}+{ }^{\prime} z^{\prime} w^{\prime}+\frac{u^{\prime}}{2}+\frac{v^{\prime}}{2}+\frac{u^{\prime}}{2}\right) \text { (3 a-c) }
\end{aligned}
$$

Updated Lagrangian Descriptor (ULD)

The coordinate that follows motion and deformation of a deformable body with respect to position, direction, and size of the body at the intermediate state (or cquilibrium state, the last known deformed configuration herein) is said to be the updated Lagrangian ${ }^{-}$ descriptor.

Total strain

$$
\dot{\cdot} \varepsilon=\frac{d^{2} s-d^{\circ} s}{d^{\prime} s}=\sqrt{1+2 v}-\sqrt{1-2(1 v)}
$$

Static strain $\quad ' E=\frac{d^{\prime} s-d^{*} s}{d^{\prime} s}=J-\frac{d^{0} s}{d^{\prime} s}=I-\sqrt{I-2\left({ }^{\prime} v\right)}$
Dynamic strain $\epsilon=\frac{d^{2} s-d^{\prime} s}{d^{\prime} s}=\frac{d^{\prime} s}{d^{\prime} s}-1=\sqrt{1+2 v}-1$

The updated Green strains in each state that represents in cquation (4) can be derived in the term of displacements of the riscr which relate to the Green strains as .

Eulerian Descriptor (ED)

The coordinate that follows motion and deformation of a deformable body with resped to position, direction, and size of the body at the final state (or the displaced state herein) is said to be the Eulerian descriptor (ED).

Total strain $: \epsilon \in=\frac{d^{2} s-d^{2} s}{d^{2} s}=1-\frac{d^{*} s}{d^{2} s}=1-\sqrt{1-2\left({ }^{2} E\right)}$
Static strain $\quad{ }^{\prime \epsilon} \varepsilon=\frac{d^{\prime} s-d^{\prime} s}{d^{2} s}=\sqrt{1-2 E}-\sqrt{1-2\left({ }^{2} E\right)}$
Dynamic strain $\varepsilon \in=\frac{d^{\prime} s-d^{\prime} s}{d^{2} s}=1-\frac{d^{\prime} s}{d^{\prime} s}=1-\sqrt{I-2 E}$
The Almansi strains in each state that represents in cquation (6) can be derived in terms of displacements of the riser which relate to the Green strains as

PROPERTIES OF THE PIPE AND TRANSPORTING FLUID IN THREE DEFORMATION DESCRIPTORS

The change of the large axial strain among three states leads to relations of differential arc-length of the pipe, cross-sectional properties of the pipe and internal flow velocity of transpored fluid is shown as. follows.
a) Relations of differential arc-length of the pipe

TLD;

$$
\begin{equation*}
d^{\prime \prime} s=\frac{d^{\prime} s}{1+{ }^{\prime} \bar{\varepsilon}}=\frac{d^{\prime} s}{1+'^{\prime} \bar{\varepsilon}} \tag{Sa}
\end{equation*}
$$

ULD;

$$
\begin{equation*}
\frac{d^{\circ} s}{l-{ }^{\prime} \varepsilon}=d^{\prime} s=\frac{d^{*} s}{l+\varepsilon} \tag{8b}
\end{equation*}
$$

ED:

$$
\begin{equation*}
\frac{d^{\prime \prime} s}{d-{ }^{j \varepsilon} \varepsilon}=\frac{d^{\prime} s}{1-{ }^{\varepsilon} \varepsilon}=d^{\prime} s \tag{8c}
\end{equation*}
$$

b) Relations of cross-sectional properties of the pipe

Since the pipe volume is conserved, the cross-sectional areas of the pipe at the three states, ' A_{p}, can be related to each other as

TLD;

$$
\begin{equation*}
{ }^{-} A_{p}={ }^{\prime} A_{p}(I+\bar{\varepsilon})={ }^{\prime} A_{p}(I+\bar{E}) \tag{9a}
\end{equation*}
$$

ULD:

$$
\begin{equation*}
{ }^{\cdot} A_{p}=\frac{{ }^{\prime} A_{p}}{\left(1-{ }^{\prime} \varepsilon\right)}=\frac{{ }^{2} A_{p}(I+\varepsilon)}{\left(1-{ }^{\prime} \varepsilon\right)} \tag{9b}
\end{equation*}
$$

ED;

$$
\begin{equation*}
" A_{p}=\frac{{ }^{\prime} A_{p}}{\left(1-{ }^{1 E} \varepsilon\right)}=\frac{{ }^{2} A_{p}}{\left(1-{ }^{2 E} \varepsilon\right)} \tag{9c}
\end{equation*}
$$

The relations of diameter, (${ }^{\prime} D_{\rho}$), moment of inertia, $\left({ }^{\prime} I_{N}\right)$, and polar monent of ineria, (${ }^{i} J_{p}$), of the circular pipe among the three states determined corresponding to equations ($9 \mathrm{a}-\mathrm{c}$) are shown below.

TLD:

$$
\begin{align*}
& \cdot D_{r}={ }^{\prime} D_{r} \sqrt{1+\bar{\varepsilon}}={ }^{\prime} D_{\rho} \sqrt{1+{ }^{2} \bar{\varepsilon}} \tag{10a}\\
& \cdot I_{r}=I_{r}(I+\bar{\varepsilon})^{2}=I_{r}\left(I+{ }^{\prime} \bar{\varepsilon}\right)^{i} \tag{10~b}
\end{align*}
$$

ULD:

$$
\begin{equation*}
\cdot J_{\rho}={ }^{\prime} J_{P}(1+\sqrt{\varepsilon})^{\prime}={ }^{2} J_{\rho}\left(1+{ }^{2} \bar{\varepsilon}\right)^{\prime} \tag{10c}
\end{equation*}
$$

$$
\begin{align*}
& \cdot D_{r}=\frac{{ }^{\prime} D_{r}}{\sqrt{I-' \varepsilon}}={ }^{2} D_{r} \sqrt{\frac{I+\varepsilon}{I-' \varepsilon}} \tag{11a}\\
& { }^{\prime} I_{r}=\frac{' I_{r}}{\left(I-'^{\prime} \varepsilon\right)^{2}}=I_{r} \frac{(I+\varepsilon)^{2}}{(1-' \varepsilon)^{2}} \tag{11b}\\
& J_{r}=\frac{' J_{r}}{\left(1-{ }^{\prime} \varepsilon\right)^{2}}={ }^{3} J_{\rho} \frac{(I+\varepsilon)^{2}}{(1-' \varepsilon)^{2}} \tag{11c}
\end{align*}
$$

ED;

$$
\begin{align*}
& { }^{\circ} D_{\nu}=\frac{{ }^{\prime} D_{p}}{\sqrt{1-{ }^{1 E} \varepsilon}}=\frac{{ }^{2} D_{p}}{\sqrt{1-{ }^{2 E} \varepsilon}} \tag{12a}\\
& \cdot I_{r}=\frac{I_{p}}{\left(I-{ }^{\prime \prime} \varepsilon\right)^{2}}=\frac{{ }^{2} I_{\rho}}{\left(I-{ }^{2 E} \varepsilon\right)^{\prime}} \tag{12b}\\
& \cdot J_{r}=\frac{{ }^{\prime} J_{p}}{\left(1-{ }^{1 \varepsilon} \varepsilon\right)^{*}}=\frac{{ }^{i} J_{p}}{\left(1-{ }^{2 f} \varepsilon\right)^{*}} \tag{12c}
\end{align*}
$$

c) Relations of internal fow velocity of transported fluid

- By substituting equation (9) into the continuity equation of the nuid flow in the control volume pipe, the relationships of intemal flow. velocities at the three states are obtained as

TLD;

$$
\begin{equation*}
{ }^{\prime} \mathrm{V}_{1}=\frac{\dot{V}_{i}}{1+{ }^{\prime} \bar{\varepsilon}}=\frac{\dot{V}_{i}}{1+\dot{\bar{\varepsilon}}} \tag{13a}
\end{equation*}
$$

ULD:

$$
\begin{equation*}
\sigma_{1}=\because\left(I-I^{\prime} \varepsilon\right)=\frac{V(I-' \varepsilon)}{(I+\varepsilon)} \tag{13b}
\end{equation*}
$$

ED:

$$
\begin{equation*}
v_{1}=r_{1}\left(I-{ }^{\prime \prime} \varepsilon\right)=v_{(}\left(1-{ }^{\prime \prime} \varepsilon\right) \tag{13c}
\end{equation*}
$$

TIIE EXTENSIBLE ELASTICA THEORY

The followings are the extensible elastica theorems for the Hookean material pipe corresponding to the three deformation descriptors (Chuchecpsakul ct al., 2003). These theorems are used to develop the large strain formulations of threc-dimensional extensible flexible pipe, which will be discussed later.

Theorem 1: When the TLD is adopted to describe deformation of the. pipe, the fiber strain. the constitutive relations and the virual strain energy are expressed as follows

$$
\begin{aligned}
& { }^{\prime} \bar{\varepsilon}_{i}={ }^{-} \bar{\varepsilon}+\zeta\left[{ }^{2} \kappa\left(l+{ }^{\prime} \bar{\varepsilon}\right)-{ }^{\circ} \kappa\right] \\
& { }^{2} N=E^{\bullet} A_{r}{ }^{2} \bar{\varepsilon},{ }^{\bullet} M=E^{\bullet} I_{p}\left[{ }^{2} \kappa\left(1+{ }^{2} \bar{\varepsilon}\right)-{ }^{\circ} \kappa\right] \text {, } \\
& { }^{2} T \equiv G^{\bullet} J_{p}\left[{ }^{2} \tau\left(1+{ }^{{ }^{\varepsilon}} \bar{\varepsilon}\right)-{ }^{-} \tau\right], \\
& \delta U=\int_{\cdot,}\left\{{ }^{2} N \delta^{2} \bar{\varepsilon}+{ }^{2} M \delta\left[{ }^{2} \kappa\left(1+{ }^{2} \bar{\varepsilon}\right)-{ }^{2} \kappa\right]+{ }^{\prime} T \delta\left[{ }^{2} \tau\left(1+{ }^{2} \bar{\varepsilon}\right)-{ }^{\prime} \tau\right]\right\} d^{\prime} s \\
& \left.\delta U=\iint_{\alpha}{ }^{*} N \delta^{\prime} s^{\prime}+{ }^{-} M \delta\left({ }^{2} \theta^{\prime}-\theta^{-} \theta^{\prime}\right)+{ }^{\prime} T \delta\left({ }^{\prime} \phi^{\prime}-\phi^{\prime}\right)\right] d \alpha \\
& \text { (14a-f) }
\end{aligned}
$$

Theorem 2: When the ULD is adopted to describe defomation of the pipe, the fiber strain, the constitutive relations and the virtual strain energy are expressed as follows

$$
\begin{align*}
& { }^{2} \varepsilon_{\zeta}={ }^{2} \varepsilon+\zeta\left[{ }^{2} \kappa(1+\varepsilon)-{ }^{\left.{ }^{2} \kappa\left(I-{ }^{\prime} \varepsilon\right)\right]}\right. \\
& { }^{2} N=E^{\prime} A_{p}{ }^{2} \varepsilon,{ }^{2} M=E^{\prime} I_{P}\left[{ }^{2} \kappa(I+\varepsilon)-{ }^{2} \kappa\left(I-{ }^{\prime} \varepsilon\right)\right] \text {, } \\
& { }^{\prime} T=G^{\prime} J^{\prime},\left[{ }^{2} \tau(l+\varepsilon)-{ }^{\bullet} \tau\left(I-{ }^{\prime} \varepsilon\right)\right], \\
& \delta U=\int_{\delta_{\varepsilon}}\left\{{ }^{2} N \delta^{2} \varepsilon+{ }^{2} M \delta\left[{ }^{1} \kappa(I+\varepsilon)-{ }^{4} \kappa\left(1-{ }^{\prime} \varepsilon\right)\right]\right. \\
& \left.+{ }^{2} T \delta\left[{ }^{2} \tau(I+\varepsilon)-{ }^{2} \tau\left(I-{ }^{\prime} \varepsilon\right)\right]\right\} d^{\prime} s \\
& \delta U=\int_{\alpha}\left[{ }^{2} N \delta^{2} s^{\prime}+{ }^{2} M \delta\left({ }^{2} \theta^{\prime}-{ }^{-} \theta^{\prime}\right)+{ }^{2} T \delta\left({ }^{2} \phi^{\prime}-{ }^{-} \phi^{\prime}\right)\right] d \alpha \tag{15a-1}
\end{align*}
$$

Theorem 3: When the ED is adopted to describe deformation of the pipe, the fiber strain, the constitutive relations and the virtual strain energy are expressed as follows

$$
\begin{align*}
& { }^{1 E} \varepsilon_{\zeta}={ }^{2 E} \varepsilon+\zeta\left[{ }^{2} \kappa-{ }^{0} \kappa\left(1-{ }^{2 E} \varepsilon\right)\right] \\
& { }^{2} N=E^{2} A_{f}{ }^{2 E} E,{ }^{2} M=E^{2}{ }^{2},\left[{ }^{2} K-{ }^{0} K\left(1-{ }^{2 E} \varepsilon\right)\right] \text {, } \\
& { }^{2} T=G^{2} J^{\prime}\left[{ }^{2} \tau-{ }^{0} \tau\left(1-{ }^{2 E} \varepsilon\right)\right], \quad . \\
& \delta U=\int_{i_{s}}\left\{{ }^{2} N \delta^{2} \stackrel{\rightharpoonup}{\varepsilon}+{ }^{2} M \delta\left[{ }^{2} K-{ }^{0} K\left(1-{ }^{2 E} \varepsilon\right)\right]\right. \\
& \left.+{ }^{\prime} T \delta\left[{ }^{2} \tau-{ }^{0} \tau\left(1-{ }^{2 E} \varepsilon\right)\right]\right\} d^{\prime} s \\
& \delta U=\iint_{\alpha}\left[{ }^{2} N \delta^{2} s^{\prime}+{ }^{2} M \delta\left({ }^{2} \theta^{\prime}-{ }^{0} \theta^{\prime}\right)+{ }^{2} T \delta\left({ }^{2} \phi^{\prime}-{ }^{\circ} \phi^{\prime}\right)\right] d \alpha \tag{16a-t}
\end{align*}
$$

in which ε_{σ} is the axial strain at any fiber radius $(\zeta), E$ is the elastic modulus, G is the shear modulus, N is the axial force, M is the bending moment, T is the torque, and U is the strain energies due to axial force, bending moment, and torsion of the pipe.

THE APPARENT TENSION AND THE APPARENT WEIGHT

The effects of tension, pressure and weight on pipe behavior have been studied for more than a century. There are many ways to derive these effects which treated in numerous textbooks. According to Chucheepsakul et al. (2003), the apparent tension and the apparent weight are derived from the first law of Archimedes. Since the rchimedes' principle is usable with the enclosing pressure fields, the iechnique of superimposition is adopted to determine tension and weight of the pipe on the real system.

The expressions for the apparent weight and the apparent tension generally for the three deformation descriptors are

$$
\begin{gather*}
w_{e}=\left(\rho_{p}^{\prime} A_{p}-\rho_{c}^{\prime} A_{c}+p_{i}^{\prime} A_{i}\right) g \tag{17}\\
N_{e}=E^{\prime} A_{p}^{\prime} \varepsilon=N+2 v\left(p_{c}^{\prime} A_{c}-p_{i}^{\prime} A_{\tau}\right) \tag{18}
\end{gather*}
$$

in which N is the true-wall teasion or tension of an empty pipe in the air, ρ_{p}, ρ_{e}, and ρ_{j} are densities of a pipe, external fluid, and internal nluid respectively, v is the Poisson's ratio, and g is the gravitational acceleration.
DYNAMIC INTERACTIONS BETWEEN FLUID AND
PIPE

In this section, influence of dynamic pressures due to flow of internal and external fluids is considered.

Hydrodynamic forces due to cross-flows of current and waves.
The hydrodynamic forces exerted on flexible marine risers with large displacements in the orthogonal triad system based on the coupled Morison equation (Chakrabarti, 1990) can be expressed as
where $C_{D_{1}}, C_{D_{m}}$, and $C_{D m,}$ are the tangential, normal, and binormal drag coefficients; C_{e} is the added mass coefficient; $V_{M_{H}}, V_{H m}$, and $V_{t m}$ are the tangential, normal and binormal velocities of currents and waves; and $\gamma_{1}=V_{H_{1}}-\dot{u}_{f}, \gamma_{n}=V_{H_{m}}-\dot{\nu}_{a}$, and $\gamma_{m}=V_{\text {Hba }}-\dot{w}_{m}$ are the velocities of currents and waves relative to pipe velocities $\dot{u}_{1}, \dot{\nu}_{n}$, and \dot{w}_{m} in tangential, normal, and binormal directions, respectively. For large strain analysis, the effect of cross-sectional changes of the pipe in equation (9) has to be applied to equation (19).

To eliminate the difficulty of operating with absolute function in equation (19), the signum function is used. Here

$$
\operatorname{sgn}(\gamma)=\left\{\begin{array}{cc}
1 & \text { if } \gamma \geq 0 \tag{20}\\
-1 & \text { if } \gamma<\gamma
\end{array}\right.
$$

With some manipulations, equation (19) can be arranged into
where the coefficients of equivalent tangential damping C_{*}^{*}, tangential drag forces $C_{D r}^{+}$, equivalent normal damping C_{∞}°, normal drag forces $C_{D u}^{\cdot}$, equivalent binormal damping $C_{\text {eom }}^{\cdot}$, binormal drag forces $C_{D i n}^{\circ}$, and the equivalent coefficients of added mass C_{a}^{+}and inertia forces C_{M}^{*} are

$$
\begin{align*}
& C_{*+1}^{*}=C_{D r}^{*}\left[2 V_{m t}-\dot{u}_{t}\right], C_{D r}^{*}=0.5 \rho_{c}^{2} D_{r} \pi C_{D_{r}} \cdot \operatorname{sgn}\left(\gamma_{1}\right) \quad(22 \mathrm{a}, \mathrm{~b}) \\
& C_{\alpha=}^{*}=C_{D_{m}}^{\cdot}\left[2 V_{t+m}-i_{n}\right], C_{D_{n}}^{\cdot}=0.5 \rho_{c}^{2} D_{c} C_{D_{n}} \cdot \operatorname{sgn}\left(\gamma_{*}\right) \quad(22 \mathrm{c}, \mathrm{~d}) \tag{22f,g}
\end{align*}
$$

$$
\begin{align*}
& C_{0}^{*}=\rho_{e}{ }^{2} A_{e} C_{e}, C_{N}^{*}=\rho_{\varepsilon}^{2} A_{\varepsilon} C_{N} \tag{22h,i}
\end{align*}
$$

in which C_{e} is the added mass coefficient and $C_{N}=1+C_{n}$ is the inertia coefficient.

In order to transform hydrodynamic force in the orthogonal triad system to the fixed Cartesian coordinate system, Euler's angle (Atanackovic, 1997) is used to find the transformation matrix, which is the orthogonal matrix and can be written as

$$
\left\{\begin{array}{l}
t \tag{23}\\
n \\
b
\end{array}\right\}=\left[\begin{array}{lll}
a_{15} & a_{11} & a_{3 z} \\
a_{2 x} & a_{3 r} & a_{2 z} \\
a_{3 x} & a_{3 r} & a_{3 z}
\end{array}\right]\left\{\begin{array}{l}
X \\
y \\
z
\end{array}\right\}
$$

where

$$
\begin{align*}
& a_{t x}=\cos ^{2} v_{2} \cos ^{2} v_{J} \tag{24a}\\
& a_{t r}=\cos ^{2} \theta_{2} \sin ^{2} \theta_{3} \cos ^{2} \vartheta_{1}+\sin ^{2} \vartheta_{2} \sin ^{2} \theta_{1} \tag{24b}\\
& a_{1 z}=\cos ^{2} \vartheta_{2} \sin ^{2} v_{3} \sin ^{2} v_{1}-\sin ^{2} v_{2} \cos ^{2} \vartheta_{1} \tag{24c}\\
& a_{2 x}=-\sin ^{2} v_{3} \tag{24~d}\\
& a_{2 r}=\cos ^{2} v_{1} \cos ^{2} v_{3} \tag{24e}\\
& a_{2 z}=\sin ^{2} v_{1} \cos ^{2} v_{3} \tag{241}\\
& a_{3 x}=\cos ^{2} \theta_{3} \sin ^{2} v_{2} \tag{24~g}\\
& a_{3 r}=\sin ^{2} \theta_{2} \sin ^{2} \theta_{3} \cos ^{2} \theta_{1}-\cos ^{2} \theta_{2} \sin ^{2} \theta_{1} \tag{24h}\\
& a_{3 z}=\sin ^{2} v_{1} \sin ^{2} v_{2} \cos ^{2} v_{\mathrm{J}}+\cos ^{2} v_{1} \cos ^{2} v_{1} \tag{24i}
\end{align*}
$$

Thus, equalion (21) can be transformed into the fixed Cartesian coordinates system as
where $V_{\text {th }}, V_{\text {ts. }}$ and $V_{\text {to }}$ are the velocities of external fuid in x, y, and z directions respectively, and

$$
\begin{align*}
& C_{r \pi x}^{*}=C_{r \pi}^{*} a_{i x}^{2}+C_{c m}^{*} a_{2, x}^{2}+C_{r \text { min }}^{\cdot} a_{s, v}^{2} \\
& C_{c q v}^{*}=C_{c r}^{*} a_{i r}^{2}+C_{r r}^{*} a_{2 r}^{2}+C_{c r-m}^{*} a_{3 v}^{2} \tag{26a-c}
\end{align*}
$$

$$
\begin{align*}
& C_{D x}^{*}=C_{D a_{t r}^{*}}^{*}+C_{D x}^{*} a_{\lambda x}^{3}+C_{D m}^{\cdot} a_{3, x}^{3} \\
& C_{D \gamma}^{*}=C_{D r}^{*} a_{t r}^{3}+C_{D m}^{0} a_{v v}^{3}+C_{D m}^{*} a_{n y}^{3} \tag{28a-c}\\
& C_{D z}^{-}=C_{D x} a_{1 z}^{3}+C_{D_{n}}^{-} a_{z z}^{\prime}+C_{D b_{n}}^{\cdot} a_{3 z}^{3} \\
& C_{D 2 y 1}^{*}=C_{D x}^{*} a_{1 \lambda}^{2} a_{1 r}+C_{D n}^{*} a_{21}^{2} a_{2 r}+C_{D \pi}^{0} a_{3 \lambda}^{2} a_{31} \\
& C_{D a 1}^{*}=C_{D a_{12}}^{*} a_{12}^{2} a_{12}+C_{D n}^{0} a_{2 x}^{2} a_{22}+C_{D m}^{0} a_{3 x}^{2} a_{32} \\
& C_{D_{2 z}}^{-}=C_{D x}^{-} a_{1 r}^{2} a_{12}+C_{D n}^{*} a_{21}^{2} a_{2 z}+C_{D b_{n}}^{*} a_{1 r}^{2} a_{32} \tag{29a-g}
\end{align*}
$$

$$
\begin{aligned}
& C_{D \times 2}^{-}=C_{D r}^{-} a_{15} a_{12}^{2}+C_{D r}^{0} a_{21} a_{22}^{2}+C_{D m}^{0} a_{3 r} a_{32}^{2}
\end{aligned}
$$

Equations (26a-c) represent the coefficients of equivalent hydrodynamic damping force in x, y, and z directions. Equations (27ac) represent the coefficients of equivalent hydrodynamic damping force in $x-y, x-z$, and $y-z$ planes. Equations ($28 \mathrm{a}-\mathrm{c}$) represent the coefficients
of drag force in x, y, and z directions. Equations ($29 a-g$) represent the coefficients of drag force in $x-y, x-z$, and $y-z$ planes.

At the equilibrium state, static loading is due only to the steady flow of external fluid. Therefore, the hydrodynamic forces from equations (21) and (25) are reduced to

Hydrodynamic forces due to internal flow of transported fuid

(31)

The velocity and acceleration of transported fluid can be derived as (Huang, 1993),

$$
\begin{align*}
& \overline{\mathrm{V}}_{\mathrm{F}}=\overline{\mathrm{V}}_{\mathrm{p}}+\overline{\mathrm{V}}_{\mathrm{fp}}=\frac{\partial \overline{\mathrm{C}}_{\mathrm{F}}}{\partial t}+\frac{\boldsymbol{V}_{\mathrm{fr}}}{2 s^{\prime}} \frac{\partial \overline{\mathrm{F}}_{\mathrm{F}}}{\partial \alpha} \tag{32}\\
& \overline{\mathrm{a}}_{\mathrm{F}}=\overline{\mathrm{a}}_{\mathrm{p}}+\overline{\mathrm{a}}_{\mathrm{rf}}=\frac{D \overline{\mathrm{~V}}_{\mathrm{F}}}{D t}+\frac{D \overline{\mathrm{~V}}_{\mathrm{rp}}}{D t}=\frac{D}{D t}\left(\frac{\partial \overline{\bar{p}}_{\mathrm{p}}}{\partial t}\right)+\frac{D}{D t}\left(\frac{V_{\mathrm{rr}}}{{ }^{\prime} s^{\prime}} \frac{\partial \overline{\mathrm{r}}_{\mathrm{p}}}{\partial \alpha}\right)
\end{align*}
$$

in which the term (1) is the transported mass acceleration, (2) is the coriolis acceleration, (3) is the centripetal acceleration, (4) is the loca' acceleration due to unsteady flow, (5) is the convective acceleratior due to non-uniform flow, and (6) is the relative accelerations due is local coordinate rotation and displacement.

By using the differential geometry formulas given in appendis and let V_{1} be the relative velocity of the transporting fluid, i.e $V_{1}=V_{f f}$, the velocity and acceleration of transported fluid in the fixer Cartesian coordinate system can be expressed as follows

$$
\begin{align*}
& \overline{\mathrm{V}}_{\mathrm{F}}=\left[{ }^{2} \dot{x}+\frac{V_{i}{ }^{2} x^{\prime}}{{ }^{2} s^{\prime}}\right] \bar{i}+\left[{ }^{2} \dot{y}+\frac{V_{i}{ }^{2} y^{\prime}}{{ }^{2} s^{\prime}}\right] \dot{j}+\left[{ }^{2} \dot{z}+\frac{V_{i}{ }^{2} z^{\prime}}{{ }^{2} s^{\prime}}\right] \dot{k} \tag{34}
\end{align*}
$$

$$
\begin{aligned}
& \left.+\left[\frac{\left({ }^{2} x^{\prime 2} y^{\prime}-{ }^{2} x^{\prime 2} y^{\prime \prime}\right)^{2} y^{\prime}+\left({ }^{2} x^{\prime 2} z^{\prime \prime}-x^{2} x^{\prime 2} z^{\prime \prime}\right)^{2} z^{\prime}}{\left({ }^{2} s^{\prime}\right)^{4}}\right] V_{1}^{2}+\left(\frac{D V_{i}}{D t}\right)^{2} x^{\prime} s^{\prime}\right] i \\
& +\left\{z^{2} \ddot{y}+\left[-\left(\frac{{ }^{2} x^{\prime 2} y^{\prime}}{\left({ }^{2} s^{\prime}\right)^{3}}\right) \cdot \ddot{x}^{\prime}+\left(\frac{2}{{ }^{2} s^{\prime}}-\frac{\left(\dot{y}^{\prime} y^{\prime}\right)^{2}}{\left({ }^{2} s^{\prime}\right)^{3}}\right): \ddot{y}^{\prime}-\left(\frac{\dot{y}^{\prime} y^{\prime 2} z^{\prime}}{\left({ }^{2} s^{\prime}\right)^{3}}\right) \cdot z^{\prime}\right] V_{1}\right. \\
& \left.+\left[\frac{\left(y^{\prime \prime} y^{\prime} x^{\prime}-y^{\prime 2} x^{\prime}\right)^{2} x^{\prime}+\left(y^{\prime \prime} y^{\prime \prime} z^{\prime}-{ }^{2} y^{\prime 2} z^{\prime}\right) z^{\prime} z^{\prime}}{\left({ }^{2} s^{\prime}\right)^{\prime}}\right] V_{i}^{\prime}+\left(\frac{D V_{1}}{D I}\right)^{2} y^{\prime} y^{\prime} s^{\prime}\right] \dot{j} \\
& +\left\{2 \ddot{z}+\left[-\left(\frac{{ }^{2} x^{\prime 2} z^{\prime}}{\left({ }^{2} s^{\prime}\right)^{3}}\right){ }^{2} \ddot{x}^{\prime}-\left(\frac{{ }^{2} y^{\prime} z^{\prime} z^{\prime}}{\left(\dot{\prime}^{\prime} s^{\prime}\right)^{3}}\right)^{2} \ddot{y}^{\prime}+\left(\frac{2}{{ }^{2} s^{\prime}}-\frac{\left({ }^{2} z^{\prime}\right)^{2}}{\left({ }^{2} s^{\prime}\right)^{3}}\right)^{2} \ddot{z}^{\prime}\right] V_{1}\right.
\end{aligned}
$$

VIRTUAL WORK FORMULATIONS

Based on the elastica theory, the apparent tension concept and dynamic interactions between fluid and pipe, the intemal virtual work and external virtual work can be obtained.

Internal virtual work of the effective system

For the overall apparent system, the pipe is subjected to the apparent tension $N_{\text {e }}$ in place of the axial force of the real system. Therefore, applying equations (14-16) (the extensible elastica theory) to the apparent system yields the stiffness equation of the initially straight pipe:

$$
\begin{equation*}
\delta U=\iint_{\Omega}\left[N_{0} \delta^{2} s^{\prime}+{ }^{2} M \delta^{2} \theta^{\prime}+{ }^{2} T \delta^{2} \phi^{\prime}\right] d \alpha \tag{37}
\end{equation*}
$$

where

$$
\begin{align*}
& { }^{2} N_{\varepsilon}= \begin{cases}E^{0} A_{p}{ }^{2} \bar{\varepsilon} & \text { (TLD) } \\
E^{\prime} A_{p}{ }^{2} \varepsilon & \text { (ULD) }{ }^{2} M={ }^{2} B^{2} K,{ }^{2} B=\left\{\begin{array}{c}
E^{0} I_{p}\left(l+{ }^{2} \bar{\varepsilon}\right) \\
E^{\prime} A_{p}{ }^{\prime 2} \varepsilon
\end{array}\right) \text { (ED) } \\
E^{\prime} I_{p}(l+\varepsilon) \\
E^{2} I_{p}\end{cases} \tag{TLD}\\
& { }^{2} T={ }^{2} C^{2} \tau_{0}{ }^{2} C=\left\{\begin{array}{cc}
G^{0} J_{p}\left(1+{ }^{2} \bar{\varepsilon}\right) & \text { (TLD) } \\
G^{\prime} J_{p}(1+\varepsilon), & \text { (ULD) } \\
G^{2} J_{p} & \text { (ELD) }
\end{array}\right.
\end{align*}
$$

External wirtual work of the effective system

The external forces exert upon the marine pipes are the effective weight, hydrodymamic loading, and inertial forces which depend on deformation of the pipe. Therefore, an evaluation of these forces should be done with respect to the current configuration of the pipe. Then the variation of external virtual work evaluating from the free bodies at displaced state is

$$
\begin{equation*}
\delta W=\delta W_{\alpha}+\delta W_{H}+\delta W_{1} \tag{39}
\end{equation*}
$$

where $\delta W_{k} . \delta W_{\prime \prime}$ and δW_{1} are the virtual work of the apparent weight, hydrodynamic pressure, and inertial forces of the pipe and transported fluid respectively. In the Cartesian coordinates, these expressions are written as follows,

$$
\begin{align*}
& \delta W_{*}=-\int_{a} w_{e}^{2} s^{\prime} \delta^{2} v d \alpha \tag{40}
\end{align*}
$$

$$
\begin{align*}
& \delta W_{1}=-\iint_{a}\left(m_{p} a_{m}+m_{r} a_{f x}\right)^{2} s^{\prime} \delta^{2} u+\left(m_{r} a_{n y}+m_{r} a_{f y}\right)^{2} s^{\prime} \delta^{\prime} v \tag{41}\\
& \left.+\left(m_{f} a_{f}+m_{f} a_{f_{z}}\right)^{2} s^{\prime} \delta^{2} w\right] d \alpha \tag{42}
\end{align*}
$$

in which $\overline{\mathrm{a}}_{p}=a_{\rho \mu} \hat{i}+a_{p r} \hat{j}+a_{\rho} \hat{k}=\overline{\bar{r}}={ }_{2} \dot{u} \hat{i}+, i \hat{j}+{ }_{2} \ddot{w} \hat{k}$ and the expressions of hydrodynamic force, $\bar{F}_{H}=f_{H R} \hat{i}+f_{H f} \hat{j}+f_{H t} \bar{k}$, and the accelerate of transporting fluid, $\bar{a}_{\mathrm{F}}=a_{f x} \bar{i}+a_{f y} \bar{j}+a_{f:} \hat{k}$, are given by equations (25) and (35) respectively. Substituting aquations (40)-(42) into equation (39) yiclds

$$
\begin{align*}
& \delta W=\int_{\varepsilon}\left\{{ }^{2} s^{\prime}\left[f_{1 u}-m_{\rho} a_{\mu}-m_{i} a_{f_{t}}\right] \delta^{2} u\right\} d \alpha \\
& +\int\left\{{ }^{2} s^{\prime}\left[-w_{f}+f_{H}-m_{f} a_{m}-m_{f} a_{f f}\right] \delta^{2} v\right\} d \alpha \\
& +\int\left\{'_{s}\left[f_{t t}-m_{r} a_{\kappa}-m_{r} a_{f_{t}}\right] \delta^{\prime} w\right\} d \alpha \tag{43}
\end{align*}
$$

Total virtual work

From the principle of virtual work, the total virtual work of the effective system is zero:

$$
\begin{equation*}
\delta \pi=\delta U-\delta W=0 \tag{44}
\end{equation*}
$$

Substituting equations (37) and (43) into equation (44) and utilizing the differential geometry expressions in appendix yields the total virtual work expressed in the fixed Cartesian coordinate. Integrating by part three times, one obtains the Euler's equation and the natural boundary conditions as follows.

where

$$
\begin{align*}
& \mathbf{F}_{3 \mathrm{~s}}=\frac{{ }^{-2} T\left({ }^{2} y^{\prime 2} z^{\prime \prime}-{ }^{2} z^{\prime 2} y^{\prime \prime}\right)^{2} s^{\prime \prime}}{\left({ }^{\prime} s^{\prime}\right)^{6}\left({ }^{2} x\right)^{2}} \tag{46a}\\
& \mathbf{F}_{2 y}=\frac{-{ }^{2} T\left({ }^{2} z^{\prime 2} x^{\prime \prime}-{ }^{2} x^{\prime 2} z^{\prime \prime}\right)^{2} s^{\prime \prime}}{\left({ }^{1} s^{\prime}\right)^{6}\left({ }^{3} \kappa\right)^{2}} \tag{46~b}\\
& \mathrm{~F}_{7=}=\frac{-{ }^{-} T\left({ }^{2} x^{\prime 2} y^{4}-{ }^{2} y^{\prime 2} x^{2}\right)^{2} s^{\prime \prime}}{\left({ }^{2} s^{\prime}\right)^{6}\left({ }^{3} x\right)^{2}} \tag{46c}\\
& { }^{2} R_{x}=\left[\left({ }^{2} N_{a}-{ }^{2} B\left({ }^{2} \kappa\right)^{2}\right)\left(\frac{{ }^{2} x^{\prime}}{{ }^{2} s^{\prime}}\right)-\frac{{ }^{3} B^{2} s^{\prime \prime}}{\left({ }^{2} s^{\prime}\right)^{3}} \frac{\partial}{\partial \alpha}\left(\frac{{ }^{2} x^{\prime}}{{ }^{2} s^{\prime}}\right)\right]+{ }^{2} T^{2} \kappa^{2} b_{x} \\
& -\left[\frac{s^{\prime}}{\left(s^{\prime} s^{\prime}\right.} \frac{\partial}{\partial \alpha}\left(\frac{{ }^{2} x^{\prime}}{s^{\prime}}\right)\right] \tag{47a}
\end{align*}
$$

$$
\begin{align*}
& { }^{2} R_{r}=\left[\left({ }^{2} N_{a}-{ }^{2} B\left({ }^{2} \kappa\right)^{2}\right)\left(\frac{{ }^{2} y^{\prime}}{3^{\prime} s^{\prime}}\right)-\frac{{ }^{2} B^{2} s^{\prime}}{\left({ }^{2} s^{\prime}\right)^{3}} \frac{\partial}{\partial \alpha}\left(\frac{{ }^{2} y^{\prime}}{{ }^{2} s^{\prime}}\right)\right]+{ }^{2} T^{2} \kappa^{2} b_{r} \\
& -\left[\frac{{ }^{2} B}{\left({ }^{2} s^{\prime}\right)^{2}} \frac{\partial}{\partial \alpha}\left(\frac{y^{2} y^{\prime}}{{ }^{2} s^{\prime}}\right)\right] \tag{47b}\\
& { }^{2} R_{z}=\left[\left({ }^{2} N_{a}-{ }^{2} B\left({ }^{2} x\right)^{2}\right)\left(\frac{{ }^{2} z^{\prime}}{{ }^{2} s^{\prime}}\right)-\frac{{ }^{2} B^{2} s^{\prime}}{\left({ }^{2} s^{\prime}\right)^{3}} \frac{\partial}{\partial \alpha}\left(\frac{{ }^{2} z^{\prime}}{{ }^{2} s^{\prime}}\right)\right]+{ }^{2} T^{2} x^{2} b_{z} \\
& -\left[\frac{{ }^{2} B}{\left({ }^{2} s^{\prime}\right)^{2}} \frac{\partial}{\partial \alpha}\left(\frac{{ }^{2} z^{\prime}}{{ }^{\prime} s^{\prime}}\right)\right] \tag{47c}\\
& { }^{2} q_{x}={ }^{2} s^{\prime}\left[\rho_{H_{4}}-m_{p} a_{p t}-m_{1} a_{f_{x}}\right] \tag{48a}\\
& { }^{2} q_{y}={ }^{2} s^{s}\left[-w_{p}+\int_{k_{y}}-m_{p} a_{p y}-m_{1} a_{f y}\right] \tag{48b}\\
& { }^{2} q_{s}={ }^{2} s^{s}\left[f_{t t}-m_{P} a_{k}-m_{r} a_{f_{s}}\right] \tag{48c}
\end{align*}
$$

The Euler's equation (45) can be written in vectorial form as

$$
\begin{align*}
& {\left[\frac{i_{B}}{\left(i^{\prime}\right)^{2}} \frac{\partial}{\partial \alpha}\left(\frac{{ }^{i} \vec{r}}{i_{s^{\prime}}}\right)\right]\left[-\left[\left({ }^{i} N_{a}-i_{B}\left({ }^{i} \kappa\right)^{2}\right)\right)^{i^{\prime} \vec{r}}{ }^{i_{s^{\prime}}} i_{B}\left(\frac{i_{s}^{\prime}}{\left(i^{\prime} s^{3}\right.}\right) \frac{\partial}{\partial \alpha}\left(\frac{i_{\vec{r}}}{i_{s^{\prime}}}\right)\right]} \\
& -\left[\frac{i^{T}}{i_{s}^{\prime}}\left(\frac{i_{\vec{r}}}{i_{s^{\prime}}} \times \frac{\partial}{\partial \alpha}\left(\frac{i_{\vec{r}}}{i_{s^{\prime}}}\right)\right)\right]-{ }^{i} \bar{q}=0 \tag{49}
\end{align*}
$$

VECTORIAL FORMULATION

To validate equation (49), one has to use the relation between three orthogonal coordinate systems and two moment differential equations to eliminate shear forces. As a result, it is found that the six equilibrium equations are reduced to thrce equations and can be arranged in vectorial form as equation (49).

Figure 3. Pipe differential segment.

Figure 3. shows the pipe element of the length $d^{\prime} s$ in displaced state loaded by forces and couples in the cross-sectional principal axes system. Let ${ }^{2} R$ be the vector of an internal force such that ${ }^{2} \hat{R}={ }^{2} R_{1}{ }^{2} \hat{e}_{1}+{ }^{2} R_{2}{ }^{2} \hat{e}_{2}+{ }^{2} R_{3}{ }^{2} \hat{e}_{3}$ where ${ }^{2} R_{1}$ is an axial force, ${ }^{2} R_{2}$ and ${ }^{2} R_{\mathrm{j}}$ are shear forces; let ${ }^{3} \bar{M}$ be the vector of an intemal moment such that ${ }^{2} \vec{M}^{2}{ }^{2} M_{1}{ }^{2} \hat{e}_{1}+{ }^{2} M_{2}{ }^{2} \hat{e}_{2}+{ }^{2} M_{3}{ }^{2} \hat{e}_{3}$ where ${ }^{2} M_{1}$ is a iwisting moment, ${ }^{\prime} M_{2}$ and ${ }^{'} M_{1}$ are bending moments. The vector of an external load, i.e., current and wave force, effective weight, inertial force, is represented by ${ }^{2} \bar{q}={ }^{2} q_{1}{ }^{2} \dot{e}_{1}+{ }^{2} \boldsymbol{q}_{2}{ }^{2} \dot{e}_{2}+{ }^{2} q_{3}{ }^{2} \hat{e}_{j}$ and the vector of an external distributed moment is represented by ${ }^{2} \bar{m}={ }^{2} m_{1}{ }^{2} \bar{e}_{1}+{ }^{2} m_{2}{ }^{3} \dot{e}_{2}$ $+{ }^{3} m_{1}{ }^{2} \hat{e}_{j}$. Since the pipe element is in equilibrium, therefore the sum of forces and the sum of moments equal to zero. Hence, the equilibrium equations in the cross-sectional principal axes system are

$$
\begin{align*}
& \frac{{ }^{2} R_{i}^{\prime}}{{ }^{2} s^{\prime}}+{ }^{2} R_{3}{ }^{2} \omega_{2}-{ }^{2} R_{2}{ }^{2} \omega_{3}=-^{2} q_{1} \tag{50a}\\
& \frac{{ }^{2} R_{3}^{\prime}}{{ }^{2} s^{\prime}}+{ }^{2} R_{1}{ }^{2} \omega_{3}-{ }^{2} R_{1}{ }^{2} \omega_{t}=-^{2} q_{2} \tag{50b}\\
& \frac{{ }^{2} R_{3}^{\prime}}{{ }^{2} s^{\prime}}+{ }^{2} R_{2}{ }^{2} \omega_{1}-{ }^{2} R_{1}{ }^{2} \omega_{2}=-^{2} q_{3} . \tag{50c}\\
& \frac{{ }^{2} M_{i}^{\prime}}{{ }^{2} s^{\prime}}+{ }^{2} M_{1}{ }^{2} \omega_{2}-{ }^{2} M_{2}{ }^{2} \omega_{3}=-^{2} m_{t} \tag{50~d}\\
& \frac{{ }^{2} M_{2}^{\prime}}{{ }^{2} s^{\prime}}+{ }^{2} M_{1}{ }^{2} \omega_{3}-{ }^{2} M_{3}{ }^{2} \omega_{1}={ }^{2} R_{3}-{ }^{2} m_{2} \tag{50e}\\
& \frac{{ }^{2} M_{3}^{\prime}}{{ }^{2} s^{\prime}}+{ }^{2} M_{2}{ }^{2} \omega_{1}-{ }^{2} M_{1}^{\prime}{ }^{\prime} \omega_{2}=-^{2} R_{2}-{ }^{2} m_{3} \tag{50O}
\end{align*}
$$

It is worth noticing in this formulation that the external forces are assumed to act on the centerine of the pipe, therefore the distributed external moments are equal to zero.

By coordinate transformation and shear force elimination, the components of internal force vector in fixed Carresian coordinate can be derived and written in vectorial form as follows

$$
\begin{align*}
& { }^{2} \vec{R}=\left[\left({ }^{i} N_{a}-i_{B}\left({ }^{i} K\right)^{2} \frac{i^{i} \vec{r}}{i_{s^{\prime}}}-i_{B}\left(\frac{i_{s}^{\prime}}{\left(i^{\prime}\right)^{\prime}}\right) \frac{\partial}{\partial \alpha}\left(\frac{i_{\vec{r}}}{i_{s^{\prime}}}\right)\right]\right. \\
& -\left[\frac{i_{B}}{\left({ }^{i} s^{\prime}\right)^{2}} \frac{\partial}{\partial \alpha}\left(\frac{i_{\vec{r}}}{{ }^{s^{\prime}}}\right)\right]+\left[\frac{T}{{ }^{i} s^{\prime}}\left(\frac{i_{\vec{r}}}{{ }^{i} s^{\prime}} \times \frac{\partial}{\partial \alpha}\left(\frac{i_{\vec{r}}}{{ }^{\prime} s^{\prime}}\right)\right)\right] \tag{51}
\end{align*}
$$

Since, the summation of forces in fixed Cartesian coordinate is

$$
\begin{equation*}
{ }^{2} \bar{R}^{\prime}+{ }^{2} \vec{q}=0 \tag{52}
\end{equation*}
$$

therefore, it is confirmed that exact agreement is achieved among the vectorial formulation and the variational formulation.

APPLICATIONS

The formulation allows users to choose the independent variable α to suit their solutions. The independent variable α can be choosen to be $\left\{{ }^{\prime} x,{ }^{\prime} y,{ }^{\prime}{ }^{\prime} x, ' s\right\}$.

In high-tension pipe, the independent variable α can be used as the water depth ' y, which is known initially because the displacement function is the one to one function for all points of elastic curve. But

When the pipe is supported by low tension, the displacement function Ymay not be the one to one function. Therefore, using $\alpha=$'s is more Wsitable because the arc-length parameter is always the one to one fifunction for all points of elastic curves. The in-plane offset ' x or the out-of-plane offset ' z can be used as an independent variable when the offset is static. However, the boundary condition is unknown when the Foffset is dynamic and is not effective when the displacement curve looks like the C-shape or the serni C-shape.

The lef superscript i is used to define the state of variable, therefore $i=0$ refers to the analysis performed by using the total Lagrangian descriptor, $i=1$ refers to the updated Lagrangian descriptor, and $i=2$ refers to the Euletian descriptor.

This formulation is not limited to the extensible marine pipes/risers conveying fluid, but can be readily applied to the other problems of large strain with some modifications in equation (49), for example, three-dimensional clastic rods and marine cables with large displacement, and etc.

CONCLUSIONS

A variational formulation of extensible marine pipe conveying fluid has been presented in three descriptors. The classical mechanics and elastica theory of rod in a three-dimensional space have been used for large strain analysis. The independent variable is used in the formulation for the sake of generality. The formulation has been validated by the equilibrium equations obtained from summation of forces and moments of the pipe element at current state. The advantages of the present formulation are the 0exibility of the independent variable, and the application of numerous elastica problems. Moreover, the formulation can be arranged to be the form that suits for many numerical methods such as the finite element method, the shooting method, the Rayleigh-Ritz method etc.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the support of the Thailand Rescarch Fund (TRF) under grant numbers PHD/0034/2543 and RTA03/2543.

REFERENCES

Alanackovic, TM (1997). "Stability theory of Elastic Rods," Series on stability, vibration and control of systems, Vol 1, World Scientific.
Bernitsas, MM, (1982). "A Three-Dimensional Nonlinear LargeDeflection Model for Dynamic Behavior of Risers, Pipelines, and Cables," Journal of Ship Research, Vol 26, No 1, pp 59-64.
Chakrabarti, SK, and Frampton, RE (1982). "Review of Riser Analysis Techniques," Applied Ocean Research, Vol 4, No 2, pp 73-90.
Chucheepsakul, S and Monprapussom, T (2001). "Nonlinear Buckling of Marine Elastica Pipes Transporting Fluid," International dournal of Siructural Stability and Dynamics. Vol I, No 3, pp 333-365.
Chuchecpsakul, S, Huang, T and Monprapussom, T (2001). "Stability Analysis of Extensible Flexible Marine Pipes Transporting Fluid," Proc Ilth Int Offshore and Polar Eng, ISOPE, Vol 2, pp 722-729.
Chuchcepsakul, S, Huang, T and Monprapussom, T (2003). "Large Strain Formulations of Extensible Flexible Marine Pipes Transporting Fluid," Journal of Fluids and Structutres. Vol 17, No 2, pp 185-124.
Chung, JS, Cheng, BR and Huttelmaier, HP, (1994a). "ThreeDimensional Coupled Responses of a Vertical Deep-Ocean Pipe: Part I. Excitation at Pipe Ends and External Torsion, "International Sournal of Offshore and Polar Engineering, Vol 4, No 4, pp 320-330.
Chung. JS, Cheng, BR and Huttelmaier, HP, (1994b), "ThreeDimensional Coupled Responses of a Vertical Deep-Ocean Pipe: Part
11. Excitation at Pipe Tops and External Torsion," International Sournal of Offshore and Polar Engineering, Vol 4, No 4, pp 331-339.
Chung, JS, and Cheng, BR, (1996) "Effects of Elastic Joints on 3-D Nonlinear Responses of a Deep-Ocean Pipe: Modeling and Boundary Conditions," International Sournal of Offshore and Polar Engineering, Vol 6, No 3. pp 203-21I
Doll, RW, and Mote, CD (1976). "On the Dynamic Analysis of Curved and Twisted Cylinders Transporing Fluids," ASME Journal of Pressure Vessel Technology, Vol 98, pp 143-150
Felippa, CA and Chung, JS, (1981). "Nonlinear Static Analysis of Deep Ocean Mining Pipe - Part 1: Modeling and Formulation," ASME Journal of Energy Resources Technologv, Vol 103, pp 11:15.
Huang, T (1993). "Kinematics of Transported Mass Inside Risers and Pipes," Proc 3rd International Offshore Mechanics and Arctic Engineering Symposium, Vol 2, pp 331-336.
. Huang, T, and Kang, QL (1991). "Three Dimensional Analysis of a Marine Riser with Large Displacements," International Journal of Offshore and Polar Engineering. Vol 1, No 4, pp 300-306.
Kokarakis, JE and Bernitsas, MM, (1987). "Nonlinear ThreeDimensional Dynamic Analysis of Marine Risers," ASME Journal of Energy Resources Technology, Vol 109, pp 105-111.

APPENDIX

Differential Geometry

In Cartesian coordinate, the basic formulas of differential geometry of a space curve are

$$
\begin{aligned}
& { }^{2} \kappa={ }^{\prime} s^{\prime \prime} \theta^{\prime},{ }^{2} \tau={ }^{\prime} s^{\prime \prime}{ }^{\prime} \phi^{\prime} \\
& \left({ }^{2} s^{\prime}\right)^{2}=\left({ }^{2} x^{\prime}\right)^{2}+\left({ }^{2} y y^{\prime}+\left({ }^{2} z^{\prime}\right)^{2}\right. \\
& { }^{\prime} \theta^{\prime}=\frac{1}{\left({ }^{\circ} s^{\prime}\right)^{\prime}} \sqrt{\left({ }^{2} x^{\prime 2} y^{\prime}-{ }^{2} x^{\prime 2} y^{\prime}\right)^{\prime}+\left({ }^{2} y^{\prime \prime} z^{\prime}-{ }^{2} y^{\prime \prime} z^{\prime}\right)^{2}+\left({ }^{2} x^{\prime \prime} z^{\prime}-{ }^{2} x^{\prime \prime} z^{\prime}\right)^{\prime}}
\end{aligned}
$$

$$
\begin{align*}
& \text { (Ala-e) } \\
& { }^{i} \hat{n}={ }^{\prime} n_{x} \hat{i}+{ }^{i} n_{n} \hat{j}+{ }^{i} n_{z} \hat{k} \\
& { }^{i} \hat{b}={ }^{\prime} b_{x} \hat{i}+{ }^{i} b_{y} \hat{j}+{ }^{\prime} b_{i} \hat{k} \tag{A2a,b}\\
& { }^{i} n_{x}=\frac{l}{i_{\kappa}}\left(\frac{{ }^{i} x^{\prime \prime}}{\left(i^{\prime} s^{\prime}\right)^{2}}-\frac{i_{x^{\prime}} s^{\prime \prime}}{\left({ }^{i} s^{\prime}\right)^{3}}\right),{ }^{i} n_{y}=\frac{1}{i_{K} \kappa}\left(\frac{{ }^{i} y^{\prime \prime}}{\left({ }^{i} s^{\prime}\right)^{2}}-\frac{{ }^{i} y^{\prime i} s^{\prime}}{\left(i^{\prime} s^{\prime}\right)^{3}}\right) \\
& t_{n_{z}}=\frac{1}{i_{\kappa}}\left(\frac{i_{z} z^{*}}{\left(i^{\prime}\right)^{2}}-\frac{i_{z^{\prime} s^{*}}}{\left(i^{\prime} s^{\prime}\right)^{3}}\right) \\
& { }^{i} b_{x}=\frac{1}{i_{K}}\left[\frac{{ }^{i} y^{\prime i} z^{\prime}-{ }^{i} z^{\prime i} y^{\prime}}{\left({ }^{i} s^{\prime}\right)^{3}}\right],{ }^{i} b_{y}=\frac{1}{i_{K}}\left[\frac{i^{\prime} z^{\prime i} x^{\prime \prime}-{ }^{i} x^{\prime i} z^{\prime \prime}}{\left({ }^{i} s^{\prime}\right)^{3}}\right] \\
& { }^{i} b_{z}=\frac{1}{i_{\kappa}}\left[\frac{{ }^{i} x^{\prime \prime} y^{\prime \prime}-{ }^{\prime} y^{\prime \prime} x^{\prime}}{\left(i s^{\prime}\right)^{3}}\right] \tag{3}
\end{align*}
$$

