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" ABSTRACT

The purpose of this paper is to develop a three-dimensional
model formulation of an extensible marine pipe transporting fluid via a
variational approach. The elastica theory of extensible rod and the
kinematics theory of mass transported on the moving frame are used to
obtain the model formulation. The three deformation descriptions
referring to the Cartesian coordinate are considered. they are the total
Lagrangian. the updated Lagrangian. and the Eulerian. By the principlé
of virtual work-energy, the Euler equations is derived and can be
validated by the vectorial summation of forces and moments.

KEYWORDS: Three-dimensional pipes tansporting (luid, Large

displacements, Large strain, Extensible pipe. Variational formulation.
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INTRODUCTION

In literature, there are a limited number of research on three-
dimensional analysis of marine pipes/risers, for example. Doll and
Mote (1976), Bemitsas (1982), Felippa and Chung (1981). Huang and
Kang (1991), Kokarakis and Bemitsas (1987), and Chung ct al. (1994
a&b, 1996). All of these studies considered the effect of axial
deformation using small strain analysis. Unfortunately. for highly
flexible pipes, this constraint is no longer applicable.

Recently, Chucheepsakul et al. (2003) proposed a model
formulation, which signifies the effect of large axial deformation and
fluid transportation. The elastica theory was used to develop the two-
dimensional model. Numerical demonstrations are given in
Chucheepsakul et al. (2001) and Chucheepsakul and Monprapussom
(2001). For a complete model,
including the effect of torsion should be developed.

The objective of this paper is to develop the model formulation of
marine pipe/riser expericncing large displacement and large
deformation in three-dimensional space. The formulation is developed
by variational approach based on the ¢lastica theory and the work-
energy principle. The strain energy of the pipe composes of strain
energy due (o large axial deformation, bending. and twisting. Large
axial strain consideration is investigated in three deformation
descriptors, namely the total Lagrangian, the updated Lagrangian, and
the Culerian. The apparent tension concept and the dynamic
interactions between fluid and pipe are used to derive the external
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a three-dimensional formulation -

virtual works of the pipe. The variational formulation is validated by
the vectorial formulation, which coasiders the equilibrium of forces and
moments of a three-dimensional pipe/riser segment.

ASSUMPTION

The following assumptions are used to stipulate the present
formulation. a) The material uséd in the pipe is linearly elastic. b) The
pipe is initially stralgh( and has ng Tesidual stress at the undeformed
state. ¢) The pipe’s cross sections rémain circular aftec change of cross-
sectional size due 1o the Poisson effect. d) Longitudinal strain is large.
while the effect of shear strain is small and can be neglected. so that the
Kirchhofl's rod theorics are usable. e) Every cross section remains
plane and remains perpendicular to the axis. f) Radial lines of the
sections remain straight and radial as the cross section rotates about the
axis. g) The intemal and external fluids are inviscid. incompressible
and irrotational. Their densities are uniform along arc-length of the
riser. h) The intemal flow is the one-dimensional plug laminar flow. ©)
Morison’s equation is adopted for evaluating external hydrodynamic
forces of external fluid. j) The effect of rotary inertia is neghigible
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Figure 1. Three configurations of marine pipe.



MODELING AND PHYSICAL DESCRIPTIONS

The marine pipe is modeled to be three-dimensional rod with a
ball joint at the bottom end and a slip joint at the top end. The three
conft gurauons of the plpc arc depicted in Figure 1. At the undeformed
configuration, the pipc is at rest and unsuetched. Then, the pipe is
" subjected to the time-independent loads and its configuration changes
to cquilibrium configuration. Finally, at the displaced configuration,
dvnamic actions such as wave, unsteady current, and unsteady intemal
‘flow disturb the pipe to sustain vibration about the equilibrium
conlfiguration.

In this paper, three orthogonal coordinate systems are used to
define position, motion, and deformation of an extensible marine pipe.

The orthogonal triad system 7.7,b and the cross-sectional principal
axes system ‘x,.'x,,'x, with unit normal vector ‘e,.'e,. ‘e, are used as
the local coordinate. The fixed Cartesian coordinate system ‘x.‘y.’:z

with unit normal vector f,j,k is used as global coordinate. The left
superscript represents the state of marine pipe where 0 represents the
undeformed state, | represents the equilibrium state and 2 represents

0 the displaced state. therefore, i€ (0.1.2).
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Figure 2. Segments of the extensible marine pipe in three states.
Figure 2 shows the segments of the extensible marine pipe in

three states. Since the centerline of the riser at any time ¢ is. in general.
a three-dimensional curve and can be described by one parameter. the

parameter &, @€ {‘x,' ¢ ':.‘:}. that is cmployed in the formulation
for the sake of generality. Therefore if ‘x.’y,and ‘= are the coordinates
of a point along the marine pipe at time 1, then ‘x=‘x(a.'t).
‘v="p(a.'1),and 'z = '=(a,'r) . The partial desivatives with respect to

@ and time *t are represented by superscripts () and (') respectively.
MEASUREMENTS OF AXIAL STRAINS

In Cartesian coordinate, the relations of differential arc-length at
the undeformed state, the equilibrium state and the displaced state

(°s".'s’and *s") can be expressed as
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According to the mechanics of a deformable body, the definition
of axial strain can be provided in throc forms, namely the Total
Lagrangian Descriptor, the Updated Lagrangian Descriptor, and the
Euledian Descriptor. Each of these forms can be demonstrated as
follows.

Total Lagrangian Descriptor (TLD)

The coordinate that follows motion and deformation of a
deformable body with respect 1o position, direction, and size of the
body at the original state (or undeformed state herein) is said to be the
total Lagrangian descriptor.

Total strain ‘€ = —————=— /= [1+2(°L) ~{
d’s d’s
1 ° ’

Swicsrain £=25205 45y [1(L)-1
d’s d’s

(2 a-c)

The Green strains in each state that represents in equation (2) can
be denved in the terms of displacements of the riser as follows.
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Updated Lagrangian Descriptor (ULD)

The coordinate that follows motion and deformation of a
deformable body with respect to position, direction, and size of the
body at the intermediate statc (or cquilibrium state, the last known
deformed configuration herein) is said to be the updated Lagrangian’
descriptor.

Total strain ‘e = ds d’ =JT+ / 2(")

. . d! —d° e
Static strain 'E=%=I_.Z_._ ’ 1-2(" )
I g1 1
Dynamic strain e=%ﬁi—f=%_f’._1=./1+3v_/ (4 ac)
s s

The updated Green strains in each state that represents in
cquation (4) can be derived in the term of displaccments of the riscr
which relate to the Green strains as

"u='u+u="L[‘,,] v= I{T:_—,] > U=:U—1U=L(,—A‘;](53'C)
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Eulerian Descriptor (ED)

The coordinate that follows motion and deformation of a
deformable body with respect to position, direction, and size of the
body at the final state (or the displaced state herein) is said to be the
Eulerian descriptor (ED).

N dis—d°s d’s
. 2 P I ol Y .y D - 2
To(alst.ram e=—-r ! - ! ,’/ 2(’E) (6 2)
. . d's-ds y
1€, _ Y rery- 3 YL
Static strain e ==—5—= =Jr=2 ,// 2(*E) (6b)
LT
Dynamicsuain‘e:d:—ld:=l—ii—l Jl 2E (6¢)
d's d’s

The Almansi strains in cach state that represcats in cquation (6)
can be derived in terms of displacements of the riser which relate to the
Green strains as
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PROPERTIES OF THE PIPE AND TRANSPORTING
FLUID IN THREE DEFORMATION DESCRIPTORS

The change of the large axial strain among three states leads to
relations of differeatial arc-length of the pipe, cross-sectional properties
of the pipe and internal flow velocity of wransported fluid is shown as*
follows.

a) Relations of differential arc-length of the pipe

! 2
TLD: d°s = d.\'— ds S a)
I+'€ I1+°F
ULD; s _gts= 25 (8b)
1-"¢ I+€
L] !
ED: d’s__ ds. =d’s (8c)

b) Relations of cross-sectional properties of the pipe

Since the pipe volume is conserved, the cross-sectional areas of
the pipe at the three states, ‘4 , » can be related to each other as

TLD: ‘4,="'4,(1+'8)="4,(1+'F (9a)
‘A A, (1+¢€)
ULD, ‘A = 2 _—.2r 7 b
S () oY
¢ 2
ED; Y R, B 9

The relations of diameter, (‘D, ), moment of inertia, (/,). and

polar moment of inertia, (’J ,,) , of the circular pipe among the three

states determined corresponding to equations (9 a-c) are shown below.

TLD; D, ='D 1+ =D I+ (102)
1, =1 (1+'8) =1 (1+ ’E)‘ (10b)
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c) Relations of internal flow velocity of transported fluid

r (,_ IEE):

~ By substituting equation (9) into the continuity equation of the
fluid flow in the control volume pipe, the relationships of intemal flow
velocities at the three states are obtained as

TLD; =Y LA (13 2)
1+'87 1+7€
(JLD:. °F = ‘T(I-—’e):L_E] (13b)
B (I+¢€)
ED: v, =" (1-"€)="V,(1- *€) (13¢)

THE EXTENSIBLE ELASTICA THEORY

The fqllm\mgs are the extensible clastica theorems for the
Hookean material pipe corresponding to the three deformation
descriptors (Chuchcepsakul ct al., 2003). Thesc theorems arc used to
develop the large strain formulations of threc-dimensional extensible
flexible pipe, which will be discussed later.

Theorem 1: When the TLD is adopted 1o describe deformation of (hc.
pipe, the fiber strain. the constitutive relations and the virtual strain
energy are expressed as follows

E = "E+§["x‘(
IN=E°4E, M= E']’["x(l+ £)- "x] ,
ra G"J'[l‘t(/f )~ ‘T],
6U = {58 + M3[ {1+ E) -]+ 15[ *e(1+ 7€) - e Ji¢ s

‘e

l+"i:')—'x']

8U = [[*N&*s+ M5 ('~ 0) + ‘T (¢~ ¢

- (14 a-f)

Theorem 2: When the ULD is adopted to describe deformation of the
pipe, the fiber strain, the constitutive relations and the virtual strain
energy are expressed as follows
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Theorem 3: When the ED is adopted to describe deformation of the

pipe, the fiber strain, the constitutive relations and the virtual strain
energy are expressed as follows

e, ="¢ +(,'[’x -k (I~ "e)]
N=E4, e, M =E1[ -k (1-"€)],
- 'T=G’J'[’t—°t(l—"£)],
8U = [{"N87E + M8 — ok (1- %)

s
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SU =I[2N6 W4 )Ms(ie'_ -9')+ JT5(2¢l_a¢l)]da
) ) (16 a-f)
in which g, is the axial strain at any fiber radius ({), £ is the clastic

modulus, G is the shear modulus, N is the axial force, M is the bending
moment, T is the torque, and U is the strain energies due to axial force,
bending moment, and torsion of the pipe.
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THE APP.ARENT TENSION AND THE APPARENT
WEIGHT

The effects of tension, pressure and weight on pipe behavior have
been studied for more than a century. There arc many ways to derive
these effects which treated in numerous textbooks. According to
Chucheepsakul et al. (2003), the apparent tension and the appareat

~-weight are derived from the first law of Archimedes. Since the

wrchimedes® principle is usable with the enclosing pressure fields, the
“ifechnique of superimposition is adopted to determine tension and
weight of the pipe on the real system.
The expressions for the apparent weight and the apparent tension
gencrally for the three deformation descriptors are

w,=(p,'4, —p.'4,+p,'A)g an
N,=E'A’e=N+2v(p, 4.~ p'A) (i8)

in which N is the truc-wall tension or tension of an empty pipe in the
air, p,.p,. and p, are densities of a pipe, extemal fluid, and internal
fluid respectively, v is the Poisson's ratio, and g is the gravitational
acceleration.

DYNAMIC INTERACTIONS BETWEEN FLUID AND

PIPE

In this section, influence of dynamic pressures due to flow of
intermal and extemal fluids is considered.

Hydrodynamic forces due to crass-flows of current and waves.
The hydrodynamic forces excrted on flexible marine risers with

farge displacements in the orthogonal triad system based on the coupled
Morison equation (Chakrabarti, 1990) can be expressed as

Ju xCpY, |7.| t. ‘:’u
Fy=1/u 1=03p, )D. Cots IY.‘ +p,4C, 1. 140, A, 'Yu. (19)
NSw Contulril i View

whete C,..C, . and C,,, arc the tangential, normal, and binormal
drag coeflicients; C, is the added mass coeflicient; V,.V,., and ¥,
are the tangential, normal and binormal velocities of currents and
waves; and ¥, =V, —&, .Y, =Vy —v., and 7. =V — W, are the
velocities of currents and waves relative to pipe velocities #,,v,, and
W, in tangential, normal, and binormal directions, respectively. For

large strain analysis, the effect of cross-sectional changes of the pipe in
equation (9) has to be applied to equation (19).

To eliminate the difficulty of operating with absolute function in
equation (19), the signum function is used. Here

1 ify20
sgn(r)={_ . ;:}6 0)

With some manipulations, equation (19) can be arranged into

I c. o olfa)] [c. o o0 |4
Fo=ifut=—l0 C o|iv.}-| 0 C. 0 [§%
S 0 o cllel o o cllw
C.V:i+C.V,
+ C;V:-G-C;f/”" @n
C V. +C Vg,
where the coefficients of equivalent tangential damping C_,, tangential
drag forces Cp, , equivalent normal damping C.,, normal drag forces
C,., equivalent binormal damping C.,, , binormal drag forces C,,

and the equivalent coefficients of added mass C, and inettia forces Cj,
are

Gy =Co[2V,~4,],C, =0.5p,°DACy, -sgn(7,) (222)
C=Co[2V,.—7.].C5. =0.5p,°DC,, -sgn(7.) (22¢,d)

Cre = Cop [V =), Cop =0.5p.°D,Cpp. -sgn(7.) (22 L8
C: = pt -'AGCI ’ C;l = p¢ .‘A,C“ (22 h'i)

. in which C, is the added mass coefficient and C,, =/+C, is the inertia

cocfTicient. -

In order to transform hydrodynamic force in the orthogonal triad
system to the fixed Cartesian coordinate system, Euler’s angle
(Atanackovic, 1997) is used to find the transformation matrix, which is
the orthogona! matrix and can be written as



t ay ay ap||X

nr=la, ay a,|iY (23)
b a,, ay a,||Z
where

a,, =cos 'B,cos ', (242)

a,y = c0s 9, sin*0, cos 'Y, + sin 0, sin *V, (24b)

a,; = cos *9, sin *Y, sin *Y, - sin*V, cos *Y, Q40

' a,, =-sin’Y, 24 4d)

. a,, = cos *0,cos 9, (4e)

a,; =sin’¥,cos 'V, Q41

a,, = cos 0, sin "V, Q4g

a,; = sin*V, sin*0, cos *Y, — cos ’9, sin *9, (24h)

a,; = sin 0, sin *0, cos 9, + cos 'Y, cos 'V, @41

vThus, cquation (21) can be transformed into the fixed Cartesian
coordinates system as

St c. o o[ [c. ¢ c..]x
Fu=yfwp=-{ 0 CI 0 |yp-{Ch € Co3'¥
S 0 o0 c|l’%] |c. ¢, .||’z

C Pt C VI 42C, Vol + 2C_ VoV, + 3C_Vy¥,y, +C. VI +C_ V]

+ ClPy +C V] 4 2C, VW +3C, VW, 4 2C_ V¥, +C, VI +C V]
CV, +cz"++zc ViV, + 2C_ ViV 4 2C,_ Vi Vi +C_ V2 +C K4

@5y

where V,, .V, and V,, are the velocilies of external fluid in x, y, and z

directions respectively, and

Co=C 0], +C, a}, +C_,.a],
C:‘v = C;,a,’, + Cq_,a,,- + Cq,,,a,,- (26 a=c)
C.=C..a}, +C_ a0}, +C,,.a}, !
Crpy =Crya, + C.a,.a, +C, 0,0,
Crpe =Cgyza,, +C, ay 00y, +C,,.a;¢a,, (27 a<c)
C:v.w =C:',a,,,a,z +C;,,a,,-a,, +C;ua:rajz
Co =Chay +Cpa) +Cppa),
C;v =Cpapy + Co.ay +Crpaly

- _ 3 . . 3
Co = C;alz +Cn~.a;1 +Cpay;

(28 a<)

Ct;yl =Cpajyay + Cotyy @y + Cpntly yayy
Czhl = C;f?l)x'a:z +C;>.a:xa:z +Cpodya;;
C;yzl = ;a:n‘alz + Ct;.agran + C;o.a.:ra:z ]
Cl.hyl = ;alxal,r + Cl.).az.\'a;r +Cp 8, x5y (29 a-g)
Cou:r =Cpayaj, + Coa,x03; + Cpotyyaly

. e 2 . ; . 2
Ches =Cnaay; +Cpayay, + Cpuayay,

Coy: =Cn@,xayya;; + Cp0,1a,,0,, + Cpy a,5a5,a;,

Equations (26 a-c) represent the cocfficients of equivalent
hydrodynamic damping force in x, y, and z directions. Equations (27 a-
c) represent the coefTicients of equivalent hydrodynamic damping force
in x-y, x-z, and y-z planes. Equations (28 a-c) represent the cocfficients
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of drag force in x, y, and z directions. Equations (29 a-g) represent Ihc
cocfficients of drag force in x-y, x-z, and y-z plancs

At the equilibrium state, static loading is duc only 1o the stcady
flow of external fluid. Therefore, the hydrodynamic forces from
cquations (21) and (25) are reduced to

1 S IC. Y :
1 fin b= lc; IV.I.
1 S IC;- IVL
‘W 42'C Wy W4 2'C_ W Vi ¢ 2C,_ W Wa ¥'C W v
I WI42C, W Wy +25C, W V4 2C_ Y Ve \C_ ¥ o <, !
'C'_ VA2 W Wy 4 2C W W 4 2'C Wy W ¢ T WL 4 ¥
@an

'Fe = (30)

S
iF - l/.
S

Hydrodynamic forces due to internal flow of transported fluid

The velocity and acceleration of transported fluid can be derived
as (Huang, 1993),

N AT
V.=V, +V =—F4_L_* 32
F L4 P a’ ]:laa ()
sea+5. D% DV DfHKY D(Ved
T T pe T Do T pi| 3 ) Dil| s da
viisla

a" 9%, .13 + )?:;+ 'n- VfrVrr V'S
ar I J3ade )”()()()aa
K ) h—" 7 ——

()

(33)

in which the term (1) is the transported mass acceleration, (2) is the
coriolis acceleration, (3) is the centripetal acceleration, (4) is the loca’
acceleration due to unsteady flow, (5) is the convective acceleratior
due to non-uniform flow, and (6) is the relative accelerations due ¢
local coordinate rotation and displacement.

By using the differential geometry formulas given in append
and let V, be the relative velocity of the transporting fluid, i.c

V, =V, the velocity and acceleration of transported fluid in the fixec
Cartesian coordinate system can be expressed as follows

B R B R
P
Cer) T e

}/E 34
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VIRTUAL WORK FORMULATIONS

" Based on the clastica theory, the apparent tension concept and
dynamic intcractions between fluid and pipe, the intemal virtual work
and extermal virtual work can be obtained.

Internal virtual work of the effective system

For the overall apparent system, the pipe is subjected to the
apparent tension N, in place of the axial force of the real system.
Therefore, applying equations (14-16) (the extensible ¢elastica theory) to
the apparent system yields the stiffness equation of the initially straight
pipe:

8U=[[?N.875 + M5+ T8 Har &¥))
where
E°AE (TLD) E°1,(1+°€) (TLD)
N, = E’A,,-e (ULD),’M ="B'x,’B=] E'I(1+€) (ULD)
E'pre (ED) E'I’ (ED)
G*J,(1+’€) (TLD)
'T=C’t’C={ G'J,(I1+€) (ULD) (38 a-c)

G, (ELD)

External virtual work of the effective system

The external forces exert upon the marine pipes are the effective
weight, hydrodynamic loading, and inertial forces which depend on
deformation of the pipe. Therefore, an evaluation of these forces should
be done with respect to the current configuration of the pipe. Then the
variation of external virtual work evaluating from the free bodies at
displaced state is

SW = 6W,_ +5W, +8W, 39

where 5W,,6W,, and 8W, are the virtual work of the apparent weight,

hydrodynamic pressure, and inertial forces of the pipe and transported
fluid respectively. In the Cartesian coordinates, these expressions are
written as follows,

SW_=- j w, 's'8 vda (40)

W)y _-j[(f V8 ut (£ '5)8 V4 (fiu 58 whia (A1)
5w, =] [(m,a_ +map,) 5’8 u+ (mya,, + mag,) s’

+(m,a, +ma,,) 'S8 w]|da  (42)

in which 5,=apj+anj+aﬁi=‘r;=,iif+,i7j+,ﬁ'l; and the
expressions of hydrodynamic force, Fy = f,,i+ f,, j+ f,,k. and the
acoclerate of transporting fluid, 2, =a,,i +aryf +aFI; are given by

equations (25) and (35) respectively. Substituting cquations (40)-(42)
into equation (39) yiclds

W =I{’:'[f”‘ -m,a,, —m‘aﬁ]S ’u}da
+I{’s’[—w, + [ —m,a, —m,a,.,‘]b"v}da
+I{ ’s'[f,,: -m,a, — m,a,,]5 "w}da

Total virtual work

(43)

From the pnnCIplc of virtual work, the total vmual work of the
effective system is zero:

Sn=8U-6W =0 (44)
Substituting equations (37) and (43) into equation (44) and
utilizing the differential geometry expressions in appendix yields the
total virtual work expressed in the fixed Cancsian coordinate.
Integrating by part three times, one obtains the Euler’s equation and the
natural boundary conditions as follows.

T .'b; 5"+ , 5N+ )bs 8w
() () . ()%

+F,,8'u +F, 8 'V +F, 6 s ]

. condition L

on =

Torque boundary

M
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Moment  boundary condition *

'

(*né + 'n),&’vf# 'n,é “w')]

+[JR,5 WH+REWV +IRE W
gFarcc boundary

[ ('R -2q,}8 ' u+{-"R. -

+

+{—'R: _ 'q:}b"w

Euler's equation

candition

'g,}6 ""]d
(o4

—)T("'V') e _2_ l)v') S' =
= (46 a)
(s) (=)
IT 2. 2 '_ l) a\2 «
p, O )
('s) (x)
.T(l 2 )yllx') 4

() ()
'R, = (IN,_:B(JK)')[j:j ]f—)a%[

B ey
(_.s,)laa ]Sl

“3)

where

F)x =

(46 b)

(46 ¢)

2
X
v ,] +°T b,
§

(47 a)

2=




'8, =|(*N.- B () )[i’] o aaa[ ] %,

®, (-w,-lg('x)-’)(: ]

47b)

2p2 _» '
B's” [-Ji] +'Tc’b,

(5%

LT (:f)’ %[%] “r9
= "s'[f,,, ~m.a,, -—m,a,,] (48 a)

=*sT-w, + fi, ~m,a,, ~ma,, | (48 b)
=’-“'[f,¢—m,aF—m,aF,] (48¢)

The Euler’s equation (45) can be written in vectorial form as

g 3 TR AT e B PR R
o) | g el

VECTORIAL FORMULATION

To validate equation (49), one has 10 use the relation between
three orthogonal coordinate systems and two moment differential
cquations to eliminalte shear forces. As z result, it is found that the six
equilibrium cquations are reduced to thrée cquations and can be
arranged in vectorial form as equation (49).

2 2.

Figure 3. Pipc differential segment.
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CIR="R,+ R, %, +

- that ‘M ='M,% +'M,%¢, + M, ’é, where M,

. 3
Figure 3. shows the pipe element of the length d’s in dlsplaoed“
state loaded by forces and couples in the cross-sectional principal axes’
system. Let 'R be the vector of an intemal force such thay
*R,%é, where 'R, is an axial force, 'R, and
IR, arc shear forces; let 'Af be the vector of an intemal moment such
is a twisting
moment, ‘M,and ’M, arc bending moments. The vector of ag
external load, ic., cumrent and wave force, effective weight, inertial
force, is represented by ’G = ’q,’¢, + ‘q,%¢, + ’q,’¢, and the vector of
an external distributed moment is represented by ‘= 'm,’é, + *m, %,
+7m,%é, . Since the pipe element is in equilibrium, therefore the sum of

forces and the sum of moments cqual to zero. Hence, the equilibrium
cquations in the cross-sectional principal axes system arc -

2p’
R
';.‘_: + )RJ ,(‘)1 = )RI w,=-"q, (50 a)
2
R!
5++'R w0, - 'R0, =-q, (50b)
5
2
‘,Rf + R0, - 'R, w, =-"q,_ (50 ¢)
s
2
M'+ Mw, - M, e, ="m, (50 d)
S
2447
M
24°M, 0, ~ M e, =R (50¢)
b d
2 7
{”} +’M,'0, - M, 0, = "R, 'm, (500
°s

It is worth noticing in this formulation that the external forces are
assumed to act on the centerline of the pipe, therefore the distributed
extemal moments are equal to zero.

By coordinate transformation and shear force elimination, the
components of internal force vector in fixed Cartesian coordinate can
be derived and written in vectorial form as follows

_ i 2\i~ i i = P} i;-'
R= ['Na‘ 5('x) )f‘ B (:7 aa["‘?]
) s
iB a {—~ I‘T i a i
) ) o

-
Since, the summation of forces in fixed Cartesian coordinate is

A =0 (s2)

| S’

therefore, it is confirmed that exact agreement is achicved among the
vectorial formulation and the variational formulation.

APPLICATIONS

The formulation allows users to choose the independent variable
a to suit their solutions. The independent variable a can be choosen
to be {'x. 'y, ‘z.'s} .

In high-tension pipe, the independent variable @ can be used as
the water depth 'y, which is known initially because the displacement
function is the one (o one function for all points of elastic curve. But



Y cn (hc plpc is supported by fow tension, the dqwlaccment function
may not be the one to one function. Therefore, using @ = ‘s is more
itable because the arc-length parameter is always the one (o one
function for all points of elastic curves. The in-plane offset ‘x or the
g out-of-planc offset ‘= can be used as an independent variable when the
“offset is static. However, the boundary condition is unknown when the
Foffsct is dynamic and is not effective when the displacement curve
Nlooks like the C-shape or the semi C-shape.

The left superscript ¢ is used to define the state of variable,

therefore i=0 refers to the analysis performed by using the total
‘Lagrangian descriptor, i=/ refers to the updated Lagrangian
descriptor, and i =2 refers to the Euletian descriptor.

This formuiation is not limited to the extensible marine
pipes/risers conveying fluid, but can be readily applied to the other
problems of large strain with some modifications in equation (49), for
example, three-dimensional elastic rods and marine cables with large
displacement, and etc.

CONCLUSIONS

A variational formulation of extensible marine pipe conveying
fluid has been presented in three descriptors. The dassical mechanics
and elastica theory of rod in a three-dimensional space have been used
for large strain analysis. The independent variable is used in the
formulation for the sake of generality. The formulation has been
validated by the equilibrium equations obtained from summation of
forces and moments of the pipe element at current state. The
advantages of the present formulation are the flexibility of the
independent variable, and the application of numerous elastica
problems. Moreover, the formulation can be arranged to be the form
that suits for many numerical methods such as the finite element
method, the shooting method, the Rayleigh-Ritz method etc.
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APPENDIX

Differential Geometry

In Cartesian coordinate, the basic formulas of differential
geomeltry of a space curve are

: v
=5 =15l
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