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ABSTRACT 

The purpose of this paper is to de\elop a three-dimensional 
model formulation of an extensible marine pipe transponing fluid via a 
variational approach. The elastica theory of enensible rod and h e  
kinematics theory of mass transponed on h e  mo\*ins frame are used to 
obtain the model formulation. The three deformation descriptions 
referring to the Cartesian coordinate are considefed. they arc the.total 
La~rangian. the updated Lagrangian. and the Eulerian. By the principle 
of \,irtual \<ark-energy, the Euler equations is deriwd and can be 
validated by the vectorial summation of forces and moments. 

KEYWORDS: Threediniensional pipes transponlng lluid. Large 
displawnients, Large strain. Enensible pipe. Variat~onal forniulation. 
Elastica 

INTRODUCTION 

In literature. there are a limited number of rcxarch on three- 
dimensional analysis of marine pipeslrixrs, for esample. Doll and 
Mote (1976). Bcrnitsas (1982). Fclippa and Chung (1981). Huang and 
Kang (1991). K o W s  and Bernitsas (1987). and Chung ct al. (1994 
&b, 1996). All of  these studies considered the elTect of axial 
deformation using small strain analysis. Unfonunatcly. for highly 
flexible pipes, this constraint is no longer applicable. 

Recently. Chuchcepsakul ct al. (2003) proposed a model 
formularion. which signifies the effect of large adal deformation and 
fluid transportation. The elastica theory \\as used ro dc\felop the RW- 
dimensional model. Numerical demonstrations are given in 
Cliuchecpsakul a al. (2001) and C h u c h e e p d ~ l  and Monprapu~orn 
(2001). For a complerc model. a chrcc-dimensional formulation 
including the effect oftorsion should be &\.eloped. 

The obiective of this D a m  is to develo~ the model formularion ol  . . 
marine pipelriser experiencing large displacement and iargc 
deformarion in threedimensional mace. The formulation is dcvclooed 
hy variational approach based on h e  clastica theory and the work- 
energy principle. The strain energy of the pipe composes of swain 
energy due to large axial deformation, bending. and nristing. Large 
axial strain consideration is investigated in rhrec dcformarion 
dacriptors, nanlcly the total Lagangian. the updated Lapngian. and 
!he Eulcrian. The apparent tension concept and the dynamic 
intmctions bet\\rcn fluid and pipe are used to deri\,e the external 

virtual \ \orb  of h e  pipe. The variational formulation is validated b! 
the rcaorial formulation. \rhich considers the quilibrium of forccs and 
moments ofa~threediniensional pipelriser segment. 

ASSUMPTION 

The follo\\ing assumptions are used to stipulate the prexnt 
formulation. a) The niaterial usgd in,!he pipe is linearly elastic. b) The 
pipc is initially straight and has n p  residual stress at the undefornred 
state. c) The pipe's cross sections dmain circular aficr c h a n s  of cross- 
sectional size due to the Poisson effect. d) Longitudinal strain is largc. 
\\iiile die eCfect ofsliear strain is small and can be neglecrcd. so [liar [he 
Rirchlioff's rod theories are usablc. e) E\,ery cross xcrion remains 
plane and rcniains perpendicular to the asis. O Radial lines of the 
sections remain straight and radial as the cross section rotates ahout tile - 
asis. g) Tlie internal and eaernal fluids are inviscid. inconipressiblc 
and irrotational. Their densities are uniform along arc-length of tlie 
riser. 11) The internal flo\\- is the one-dimensional plug laminar flo~v. i )  
Morison's equation is adopted for evaluating enernal hydrod!naniic 
forces ofex?ernal fluid. j) The effect of rotary inertia is negligible 

Figure I. Three configurations of marine pipe 



. <MODELING AND PIIYSICAL DESCRIPTIONS 

, The marine pipc is modeled m be ~hrccdimensional rod with a 
ball joint at the bonom end and a dip  join1 a! the top e n d  The three 

of the pipe arc dcpiaed in Figure 1. At the undcformed 
configuration, chc pipc is at ESI and unstretched. Then. the pipe is 
subjed~d @ the time-independent loads and its configuration changes 
lo equilibrium configuration. Finally, at the displaced configuration, 
dynamic actions Such as uatr. unncady current, and unsteady internal 
flow disturb the pipe to sustain vibration about the equilibrium 
configuration. 

In this paper, three orthogonal coordinatc systems arc used to 
define poshion, motion. and deformation of an cxzensiblc marine pipc. 

The orthogonal triad system i. r i ,  b and the cross-sectional principal 

axes slrtem 'x,, 'x,, 'x, uith unit normal \*eaor 'e,, 'e,. 'e, are used as 

the local coordinate. The fised Cartesian coordinatc system 'x.'y. ' z  

\\ih unit normal vector ;.j , i  is uxd  as global coordinatc. The lefi 
.~~~pcrscript reprexnls the state of marlne p~pc \\here 0 represents the 
undcformcd state. I represents the equil~brium state and 2 represents 

! the displaced statc. therefore. i~ (0.1.2) . 
_I - . '. 

Figure 2. Segments of the extensible marine pipe in three states. 

According to the mechanic. of a deformable body. the definition 
of axial strain can be providcd in three forms, namcly chc Total 
Lagrangian Descriptor, the Updated Lagrangian Descriptor. and Itc 
Eulcrian Descriptor. Each of these forms can be demonstrated as 
follow5. 

The coordinatc that fol1ou.s motion and deformation or a 
delomblc  body with respca to position, direction, and size of the 
body at the original state (or undeformed state herein) is said to be the 
total Lagrangian descriptor. 

.- d's-d0s d2s 
Total strain -E = - = - - 

d"s dOs 
1 = 

The Green strains in each state that represents in equation ( 2 )  can 
be derived in d ~ e  terms ofdisplacemencs olthe riser as lollows. .. 

Figure 2 s h o ~  the scgmtnls of  the cx-tcnsible marine pips ~n The coordinate that follo\vs motion and defonnat~on of a 
three states. Silrce the centerline of h e  riser at any time r is. in general. defonnablc body with respect to position, direction, and size chc 
a hrce-dimensional C U ~ T  and be described by one parameter. the body at hc intcrm&iau: state (or cquilibriunl statc. thc last knowo 
parameter a .  a €  {'x.'y.'z.'s}. that is employed in h e  formulation deformed configuration herein) is said to be the updated Laerangian- 

descriptor. 
for the sake of generality. Therefore if 'x.'y. and ' z  arc the coordinates 

of a point along the marine pipe at time r. then ' x  = ' x (a . ' r ) .  

' y  = ' y (a . ' r ) ,  and ' z  = 'z (a. ' r )  . The partial derivatives \ti& respect to 
dls-des d's 

a and tinx '( are represented by superscripts 0 and (C )respe&trcly Static strain IE =- = I  -- = I  -,/- 
. . dls dls 

hZEASUREMENTS OF AXIAL STRAINS ~ynamicstrain E=-=- - I==- ]  d's-d's d's 
dls d's 

(4 a-c) 

In Canesian coordinate, the relations of dificrcntial arc-length at 
the undefonned state, the equilibrium statc and the displaced state The updated Green strains in each statc illat represents in 

cquation (4) can be derived in the tcrm of displaecments of the riscr 
('s'. 's'arrd 's') can be expressed as which relate to the Green strains as , 



Eulerian Descriptor (ED) 

The coordinate that follo\rs motion and deformation of a 
deformable body with mpcd to position, direction, and size of the 
body at the final aate (or the displaced state herein) is said to be the 
Eulerian descriptor (ED). 

-Jr =L=' J, 7 ( I + E ~  
(1 - I€)' (1 - E)'  

dl$-d's 
Static strain "E = - = f i  - ,/- 

d's 
(6 b) 

d's-d's ' d's 
Dynamic strain ' E  = - = - --;- = I - J- 

d's d-s 
(6 c) ED; (I?  a) 

Thc Almansi strains in each statc that rcprcscnts in cquation (6) 
can be derived in terms ordisplacements of the riser which relate to the 
Green strains as 

PROPERTIES OF THE PIPE AND TRANSPORTING 
FLUID IN THREE DEFORMATIOX DESCRIPTORS - By substituting equation (9) into the continuity equation of the 

fluid flow in the control \volume pipe, the relationships of internal flow 
velocities at the three states are obtained as The change of the large axial strain anlong three states leads to 

relatiotls of differential arc-lenph of the pipe, cross-sectional propenies 
of the pipe and internal flo\r* velocity of transported fluid is sho\xn as. 
follo\rs. 

:,.a 

TLD; 'Y  L* , "1: =--- ( 1 3  a)  
I + '&  I+-'E 

.. . 3.; ( I  - ' E )  
ULD: -1: , = , ( 1  - I € )  = (13 b)  

( I + € )  

TLD: d's d2s d's =-= ---- 
~ + I F  I + ! E  

ED; -y = lp . ( / -  : y ( ] -  !I.'€) (13 cl 

ULD; TIIE EXTENSIBLE ELASTICA THEORY 

ED: d"s d's -=-= 
l-2EE d2s The fqllo\vings are the extensible elastica fheorelns for the 

Hookean material pipe corresponding to h e  three deforn~atioll 
descriptors (Chuchccpsakul ct al.. 2003). Thcsc thcorcms arc uscd to 
develop the large strain formulations of threedimensional extensible 
flexible pipe. which will be discussed h e r .  

b) Relurioris of cross-secfional properlies ofrlre pipe 

Since the pipe \~olume is consented, the cross-sectional areas of 
the pipe at the three states, 'A,  . can be related to each other as Tl~corcni I :  When the TLD is adopted to describe deformation of the. 

pipe, the fiber strain. the constituti\,e relations and the virtual smin 
energy are expressed as follows 

TLD; "A,= 'A , ( I+ 'F)= 'A, ( I+ 'F)  (9 a) 

ULD; 

ED; 

The relations of diameter, ( I D , ) ,  moment of inextia, ( ' I , ) .  and 

polar rnonlent of ina ia ,  ( 'J , ) ,  of the circular pipe among the three 

sutes determined corresponding to equations (9 ax)  are sho\\n b e l ~ \ ~ .  
Tllcorenr 2: When the ULD is adopted to describe derorn~ation of 
pipe. the fiber strain, the constitutive relations and the virtual strain 
energy are expressed as fol l0\\3 

TLD; -0, = 'D~JX= ' D , , n  (10 a) 

-Ir = 'lr ( I  + IF)? = : I ,  ( I  + T )  (10 b) 



Theorem 3: When the ED is adopted to desaibe deformation of the 
pipe, the fiber strain, the conditutive relations and the virtual strain 
energy are expressed as f o l l o ~  

(16 a-f) 
in which E; is the axial stmin at any fiber radius (c), E is the elastic 

modulus; G is the shear modulus. N is the axial force. M is the bending 
moment, T is the toque, and U is the strain energies due to axial force, 
bending moment, and torsion of the pipe. 

THE APPARENT TENSION AND THE APPARENT 
WEIGHT 

The e f f a  of tension, pressure and weight on pipe behavior have 
been studied for more than a century. 'Ibere are many ways to derive 
these effects which treated in numerous textbooks. According to 
Chuchocpdul d al. (2003), the apparent tension and the appamt 

, weight are derived from the first law of Archimedes. S i n e  the 
~chimeda' principle is usable with the enclosing pressure fields, rhe 

technique of ~uperimposition is adopted to determine tension and 
weight of the pipe on the real system 

The expressions for the apparent weight and the apparent m i o n  
generally for the three deformation descriptors are 

in which N is the me-wall tension or tension of an empty pipe in the 
air, p,,pe, and p, are densities of a pipe, external fluid, and intmal 

fluid rrspcaively. v is the Poisson's ratio, and g is the gravitational 
acceleration. 

DYNAMIC INTERACTIONS BETWEEN FLUID AND 
PIPE 

In this -ion, influence of dynamic prcssuns due to flow of 
internal and a t a n a l  fluids is m n s i d d .  

H$rodynamicc/orces due to cross-/ous O ~ / M C U I ~  ond uwws. 

The hydrody~mic f o r m  exerted on flexible marine risen with 
largc displacements in the orthogonal triad system b a d  on the coupled 
Morison equation (Chakrabad, 1990) can be c x p d  as 

whcrc C,.C,, and C, arc thc tangcntial, normal, and binormal 

drag coefficients; C, is the added mass coefficient; Vn,.Vn.. and V,, 

are the tangential, normal and binormal velocities of & m n &  and 
waves; and y,=Vn,-ir,,y,=V,,-i4,, and y,=V,,-w- are the 

velocities of currcnts and wavcs rclative to pipe velocities u,. i i .  and 

iu, in tangential, normal, and binormal directions, mpactively. For - 
large strain analysis, the effcct of cross-sectional changes of the pipe in 
equation (9) has to be applied to equation (19). 

To eliminate the difficulty of operating with absolute function in 
equation (19). the signum function is used. Here 

With some manipulations, equation (19) can be arranged into 

where the coeficients of equivalent tangential damping c&, . tangential 

drag forces Ck , quivalent normal damping CL. normal drag forces 

Cb, equivalent binormal damping C L  , binormal drag forces C L  . 
and the equivalent coefficients of added mass C: and inertia forces C; 

are 

in which C, is the added mass coefficient and C, = I  +C, is the inertia 
coefficient. - 

In order to transform hydrodynamic force in the orthogonal triad 
system to the fixed Cartesian coordinate system, Eulcr's angle 
(Atmackovic, 1997) is usedjo find the transformation matrix, which is 
the orthogonal matrix and can be written as 



of drag force in x. y, and z directions. E q u l o n s  (29 a-g) np-l (ht i 
c~cf idur t s  of drag f o r e  in x-y. x-z. and y-z planes. 

(23) At the equilibrium state, smic loading is due only LO (he s a d y  
flow of external fluid. Thuefore, (he hydrodynamic foroes hrn 

where equations (21) and (25) are reduced to 

air =.COS a s  '4 04 a) 

a,, = cos'1.9~ sin 'a, cos'9, +sin 't9,  sin'^^, (24 b) 0 0 )  
a,, = cos 't9, sin '9, sin '9, - sin'9, cos *19, (24 c) 

a,, = -sin '9, (24 d) t 'C- 'V: + zlc;,  'v- we + zlc- 'v,, 'v- +PC* 'velv& + - c ~ ,  V: + y-, y 
a),. = w s  '9, a s  '9, (24 e) 'F*-l$l=[ . c ; l ~ : + z f c ~ , ' ~ , l ~ ; , + z r '  - . y , v ~ + ~ r ~ , ' v ~ I Y y + r ~ , ~ : + r ~ , + ~  

'C- 'y: +2'C; 'V* 'V,, + 2 ' C ;  'V,. 'V- + 2'Cu 'Ye 'Y, + 'CL 'V: + 'C- +: 
a), = sin '9, cos '19,. (24 r) 

a,, = cos '4 sin119, (24 g) HydrodyMmic forces due ro inrernaljlow of tranrportedjluid 

I 
(3 1) 

a,, = sin *11), sin '19, cos '9, - cos 'd2 sin '19, (24 h) 
The velocity and acceleration of transported fluid can be derived 

a,, = sin2r9,sin '19, cos 'OJ + ws'r9, cos1fi2 P4 0 as (Huang, 1993). 

Thus, cquaion (21) can be transformed into (he fixed Cmaian  - V, af, 
coordinates system as VF=Vp+v,=-+-- ar 's' aa (32) 

where V,.i', and V, are the velocilies ofexternal fluid in x, y, and z 

directions respectively, and 

(26 a c )  

I 

CiW = C~,alraIr +Cka2.va2,. + C;ShaJ.ra.,r 

=C>a,,a,, +C;qa,,a2, +C>a,,a,, 

C& = C,a,a, + C&a,,.a,, + C~,aJra,, 

Ck  = C ~ Q ; ~  + + ~ & a : ~  

C& = CAd, + Cka;, + Cka:,. 1 (28 a-c) 

CA = Ga: ,  + CLdz + Cba;, 

in which the term ( I )  is the transported mass acceleralion. (2) is thc 
coriolis acceleration. (3) is the ccnrripetal acceleration, (4) is the loca' 
acceleration due to unsteady flow. (5) is the convective acceleratior 
due to non-uniform flow. and (6) is the relative accelerations due tc 
local coordinate rotation and displacement. 

By using the differential geometry formulas given in append;) 
and let Y,  be the relative velocity of the transporting fluid, i.c 

Y,  = VFP , the velocity and acceleration of transported fluid in the fixec 

Cartesian coordinate system can be expressed as follows 

Equations (26 a-c) reprexnt the coefficients of equivalent I , -  r 

hydrodynamic damping force in x. y, and z directions. Equations (27 a- 
c) represent the coefficients of equivalent hydrodynamic damping force 
in X-)I, X-Z, and y-z planes. Equalions (28 a-c) represent the coe[ficients 



VIRTUAL WORK FORMULATIONS 
B a d  on the elastica theory. the apparent tension concept and 

dynamic interactions bctwcen fluid and pipe, the internal virtual work 
and exrernal virtual work can bc obtained. 

Internal vitiual work o/the efic(ir.e n.s(em 

For the overall apparent system, the pipe is subjected to llie 
apparent tension N, in place of the axial force of the real system. 

Therefore, applying equations (14-16) (the extensible clastica theory) to 
chc apparent system yields the stiffness quation of llie initially straight 
pipe: 

su = J [ ' N , S ~ ~ ' +  ' ~ i i ' e ' +  1 ~ ~ 2 # t &  (37) . 
where 

EaA,'7 (TLD)  E "1, (1 + '7) (TLD) 
E'A,-'E ( U L D )  .'M = 'B'K.'B = E'I, ( I  + E )  (ULD) 

E'A, ".c ( E D )  E'I, ( E D )  

G"J , ( I+ ' z )  (TLD) 

G'J, ( I  + E )  (ULD) (38 a-c) 

G'J, ( E L D )  

Errernal \+rtual work of (he egecritr rysren~ 

The external forces excrt upon the marine pipcs are the effective 
weight, hydrodynamic loading, and inertial forces which depcnd on 
deformation of the pipe. Therefore, an evaluation of these forces should 
bc done with respect to the current configuration of the pipe. Then the 
variation of external virtual work evaluating &om the 6ee bodies at 
displaced state is 

, where 6W,,,6W,, and 6W1 arc the virtual work of the apparent weight, 

hydrodynamic pressure, and inertial forces of the pipe and transported 
fluid respectively. In the Cartesian coordinates. these expressions are 
writtell as follows, 

in which ii, = a  j + a , i + u , i = f  =,iii+,$+,wi and  the 

expmsions of hydrodynamic force. F,, = fnn l+ /y ]+  f , i .  and h e  

Fmm thc principlc of virtual work, the total virtual work of llic 
effective system is zero: 

6 ~ = 6 U - i i W = O  (44 ) 
Substituting equations (37) and (43) into quation (44) and 

utilizing the differential geometry expressions in appendix yields the 
total virtual work expressed in the fixed Cartesian coordinate. 
Integrating by part three times, one obtains the Euler's equation and the 
natural boundary conditions as follows. 

Torque boundary condition 

Momcnr bounbary condition ' 4 

+['R,6'uq+ 'R,6'v8+ ' R , ~ ' H :  

Force boundary cor~dirion 

Euler's equalior~ 
where 

accelerate of transporting fluid. 8, = aft; + aF,j + a,&. are given by 

equations (25) and (35) nspectively. Substituting equations (40)-(42) 
into equation (39) yields 



The Euler's quat ion (45) can be written in vectorial form as 

VECTORIAL FORMULATION 

To validate quat ion (49), one has to use the relation between 
three orthogonal coordinate systems and two moment differential 
equations to eliminate shear forccs. As a result, it is found that the six 
equilibrium equations are reduced to thra quations and can bc 
arranged in vectorial form as equation (49). 

I/ 

Figure 3. Pipe differential segment. 

3 
Figure 3. shows the pipe element of  the Icngih d's in displaoed\ 

state loaded by forces and couples in the cross-scdional principal 
system. La '2 be the vector of  an intanal force such 
' R  = 'Rl'i1 + 'Rl1i1 + 'RJ1kJ when: 'R, is an axial force. 'R, md 

'R, arc shear form;  l a  'M be the vector of an internal moment such 

moment,  and 'M, arc bending moments. The vector of 
external load, i.e., cumnt  and wave force, effective weight, inertial 
force, is represented by ' 4  = 'qI '6, + 'q, 'il + '4 ,  '6, and the vador of 

an external dismiuted moment is represented by 'rii = 'm, 'dl + 'm, '~ ,  

+'mJ26, . Since the pipe element is in equilibrium, therefore the sum of 

forces and the sum of moments equal to zero. Hence. the equilibrium 
equations in the cross-sectional principal axes system are 

'R; - + 'R,  20, - ' R ,  lo, = - I q 1  
's' 

(50 a) 

It is worth noticing in this formulation that the external forces arc 
assumed to act on the centerline of  the pipe. therefore the distributed 
external moments are equal to zero. 

By coordinate transformation and shear force elitnination, Ihc 
components of internal force vector in fixed Cartesian coordinate can 
bc derived and written in vectorial form as follo~.s 

Since, the summation of forces in f w d  Cartesian coordinate is 

I R +.'<=0 (52) 

therefore, it is confirmed that exact agreement is achieved among 
vectorial formulation and the variational formulation. 

APPLICATIONS 

The formulation allows users to choose the independent variable 
a to suit their solutions. The independent variable a can be ch0Oscn 

to bc ('1. ly,'z.'s) . 
In high-tension pipe, the indepeodent Mn'able a can be u d  as 

the water d q t h  ' y  , which is known initially because the displaCCrnent 
function is the one to one function for all points of elastic curve. But 



e pipe is supported by low tension, the displaament fundon 
be thc one to one fundion. Therefore, using a =Is is man 

e because the arc-length parameter is always the one to one 
for all poinu of elastic curves. The in-plane offset 'x or the 

cloaks like the C-shape or the semi C-shape. 
The lefl superscript i is used to define dK state of variable. 

diemfore i = O  refers to die analysis performed by using the total 
bgrangian descriptor, i = l  refers to the updated Lagrangian - 
descriptor, and i = 2 refers to the Euletian desuiptor. 

~ h k  formulation is not limited to the e~iensible marine 
pi~slrisers conveying fluid, but can be readily applied to the other 
problem of large strain with some modifications in equation (49). for 
example, tlireedimensional elastic rods and marine cables with large 
displacenient, and CtC. 

CONCLUSIONS 

A variational formulation of extensible marine pipe conveying 
nuid has been presented in three desaiptors. The dassical mechanics 
and elastica theory of rod in a threedimensional space have been used 
for large strain analysis. The independent variable is used in the 
formulation for the sake of generality. The formulation has been 
validated by the equilibrium equations obtained fiom summation of 
forces and niomencs of the pipe element af wren1 state. The 
advantages of the present formulation are the flexibility of the 
independent variable, and the application of numerous elastica 
problem. Moreover. the formulation can be arranged to be the form 
diat suits for many ?umerical methods such as the finite element 
method, (lie sl~ooting method, the Rayleigh-Rlrz method etc. 
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APPENDIX 

D~flerential Geometry 

In Cartesian coordinate, the basic formulas of differential 
geometry of a space curve are 

IIC = J s 8 J g ,  = l S ' w  

'$'= Js' 1 
(A l  a-c) 

;i-i = InK;+ 'n,.] + <n:i 

(A2 a.b) 


